Name \qquad
Class \qquad

Problem 1 - Exploring the Fundamental Counting Principle

Page 1.3 shows a method to determine the total number of different cakes.

- Explain the method that was used in your own terms.
- What is another method of drawing the segments that will lead to the same count?
- What multiplication sentence can represent this problem?

Read the scenario on page 1.5. Use segments to help solve the problem.

- What method of drawing segments did you use?
- How many outfits does Jess have to choose from?
- What multiplication sentence can represent this problem?
- Tiana is choosing an entrée and a side dish for her dinner. There are \mathbf{m} entrée choices and \mathbf{n} side dish choices. Write a formula to find how many different dinners Tiana can choose from.

Try These:

1. An ice cream parlor has 31 flavors of ice cream. If you would like to have a different two scoop cone every day, how many days can you continue to do so? (Assume the two scoops must be different and a strawberry/vanilla is different from a vanilla/strawberry?
2. A license plate consists of 3 digits, followed by 2 letters. How many different license plates exist?

Too Many Choices!

Problem 2 - Exploring Permutations

Investigate a trip between two cities where the number of possible cities changes on pages 2.2-2.5.

It is important to know that a trip from Albany to Baltimore is not the same as a trip from Baltimore to Albany. Use the answers from those pages to fill in the first four rows of the chart below. The first one is done for you.

- What pattern do you notice?

Number of Cities	Number of Paths
2	2
3	
4	
5	
6	
7	

- Predict what the number of paths will be for 6 and 7 cities.
- What formula do you think can be used to find the number of trips between 2 cities if there are n cities?
- How is this similar and different from Problem 1?

On page 2.6, use the nPr command to confirm the number of paths for 6 and 7 cities.

Try These:

1. There are 9 players who are arranged in a batting order for a softball game. How many different batting orders are there?
2. In a senior class, 6 people are running for office. If you are electing a president, vice president and secretary, how many different slates of officers are there?
3. Sixteen runners are in a cross-country race. In how many different ways can they place $1^{\text {st }}$, $2^{\text {nd }}$, and $3^{\text {rd }}$?

Too Many Choices!

Problem 3 - Exploring Combinations

In Question 2 on the previous page, 3 officers were chosen from a slate of 6 people. Instead of choosing a slate of officers, choose a committee of three. Page 3.1 shows two columns of officer slates that would each be considered the same committee.

- How many slates describe one committee?
- Predict how many slates would describe the committee of people d, e, and f.
- In Column C, list the slates that would describe the committee of people d, e, and f.
- Determine the number of committees formed from 6 people. How does this number relate to the number of slates of officers?

Use the diagrams in Problem 2 to find the number of trips that can be taken if Albany to Baltimore is the same trip as Baltimore to Albany.

- How does the number of trips compare to the number of paths?
- What formula do you think can be used to determine the number of trips for n cities?

Number of Cities	Number of Trips
2	2
3	
4	
5	
6	
7	

- Predict the number of trips will be for 6 and 7 cities.

On page 3.4, use the $\mathbf{n C r}$ command to confirm the number of trips for 6 and 7 cities.

Try These:

1. There are 12 players on a basketball team. How many starting line-ups can be made using 5 players, assuming that the position they play does not matter?
2. How many 5 -card hands can be dealt from a standard deck of 52 cards?
3. How many committees can be made from the U.S. Senate if the committee must have 3 Republicans and 3 Democrats (There are 42 Republicans, 57 Democrats and 1 Independent)?
