

Name _____

Creating a Tree Diagram

Three basketball players are in a contest, hoping to win money for a charity. There is a 63% chance that Aisha will make a shot, a 74% chance that Bria will make a shot, and a 56% chance that Carmen will make a shot.

- 1. List the sample space for the three shots. Use an **A**, **B**, or **C** to represent each girl in the sample space.
- 2. What is the probability that Aisha will make her shot? Will miss her shot?
- 3. What is the probability that **Bria** will make her shot? Will miss her shot?
- 4. What is the probability that Carmen will make her shot? Will miss her shot?

One way to organize the results of the scenario is to create a diagram where each girl's shots are represented. Next to the labels of each branch write the appropriate probabilities. (A = Aisha, B = Bria, C = Carmen, 1 = made, 2 = miss.)

Since the events of each girl making her shot are independent, the **multiplication rule** for probability can be used. Use the diagram to help calculate the eight probabilities.

- 5. What is the probability that **none** of the girls make their shots?
- **6.** What is the probability that **one** girl makes her shot? (*Hint:* Which of the eight probabilities must be added together to find the answer?)
- **7.** What is the probability that **two** girls make their shots?
- 8. What is the probability that all the girls make their shots?

Introducing Expected Value

If only one of the players makes her shot, they earn \$5,000. If two make shots, they earn \$12,500. If all three are successful, they earn \$20,000. All of the money earned goes to charity. What is the expected value of the contest for the charity?

Press STAT ENTER.

L1: Enter the possible outcomes (number of shots).

L2: Enter the probabilities from Questions 5 - 8.

L3: Enter the payoffs.

L4: Calculate **probabilities*payoff** by arrowing to the top of L4, typing L2 ⋈ L3, and pressing ENTER.

Expected Value is defined as the sum of the products of probabilities of the outcomes and their payoffs. Add the values in list L4 using the **sum** command to find the expected value of the contest. From the Home screen, press [2nd] [LIST] and arrow to the MATH menu. Select **sum(**, enter L4, and press [ENTER].

- **9.** What is the expected value of the contest?
- **10.** Should the charity expect this amount of money? Why or why not?

Extension – Putting it All Together

In a lottery game, players may pick six numbers from two separate pools of numbers — five different numbers from 1 to 56 and one number from 1 to 46. You win the jackpot by matching all six winning numbers in a drawing.

MATCH		MATCH	PRIZE	CHANCES
5	+	1	Jackpot	1 in 175,711,536
5	+	0	\$250,000	1 in 3,904,701
4	+	1	\$10,000	1 in 689,065
4	+	0	\$150	1 in 15,313
3	+	1	\$150	1 in 13,781
3	+	0	\$7	1 in 306
2	+	1	\$10	1 in 844
1	+	1	\$3	1 in 141
0	+	1	\$2	1 in 75
Overall chances of winning a prize:				1 in 40

- 1. Verify the chances to win the jackpot from your knowledge of counting principles.
- 2. Calculate the expected value for the lottery assuming the jackpot is \$42 million.
- 3. Tickets cost \$1.00 per play. How much does the lottery make/lose for each ticket sold?
- 4. What would the expected value need to be for the lottery to break even?
- 5. What would the jackpot need to be for the lottery to break even?