1.

(a) When a ball bounces, it reaches 90% of the height reached on the previous bounce. If the ball is initially dropped at 5 meters, find the height the ball reaches after the 5th bounce.
(b) Find the number of bounces it would take to no longer reach
(2 marks) a height of 2 meters.
(c) Find the total distance the ball travels

Mark scheme:
(a) height $=5 * 0.90^{5}$
height $=2.95$ meters
(b) $5 * 0.90^{n}<2$
$0.90^{n}<0.4$
$n>\log _{0.90} 0.4$
$n>8.69672 \ldots$
$n=9$
(c) Method 1:

Recognizing this as a geometric series to infinity
First term of $5 * 0.90$
Common ratio $=0.90$
Recognizing the need to double the distance and add 5
Total Distance: $2\left(\frac{5 * 0.90}{1-0.90}\right)+5=95$ meters

Method 2:
Recognizing this as a geometric series to infinity
First term of 5

Common Ratio $=0.90$
Recognizing the need to double the distance and subtract 5
Total Distance: $2\left(\frac{5}{1-0.90}\right)-5=95$ meters

