| Exploring Geometric Sequences | <b>IB® EXAM STYLE QUESTION</b> |
|-------------------------------|--------------------------------|
| Topic 1: Number and Algebra   | Geometric Sequences and Series |
|                               |                                |

| 1    |                                                                                                                                                                                                  |           |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|      | (a) When a ball bounces, it reaches 90% of the height reached<br>on the previous bounce. If the ball is initially dropped at 5<br>meters, find the height the ball reaches after the 5th bounce. | (2 marks) |
|      | (b) Find the number of bounces it would take to no longer reach a height of 2 meters.                                                                                                            | (2 marks) |
|      | (c) Find the total distance the ball travels                                                                                                                                                     | (3 marks) |
| Mark | scheme:                                                                                                                                                                                          |           |
|      | (a) height = $5 * 0.90^5$                                                                                                                                                                        | (A1)      |
|      | height = 2.95 meters                                                                                                                                                                             | (A1)      |
|      | (b) $5 * 0.90^n < 2$                                                                                                                                                                             | (M1)      |
|      | $0.90^n < 0.4$                                                                                                                                                                                   |           |
|      | $n > \log_{0.90} 0.4$                                                                                                                                                                            | (A1)      |
|      | $n > 8.69672 \dots$                                                                                                                                                                              |           |
|      | n = 9                                                                                                                                                                                            | (A1)      |
|      | (c) Method 1:<br>Recognizing this as a geometric series to infinity                                                                                                                              |           |

| First term of $5 * 0.90$ |      |
|--------------------------|------|
| Common ratio $= 0.90$    | (M1) |
|                          |      |

| Recognizing the need to double the distance and add 5 | (M1) |
|-------------------------------------------------------|------|
|-------------------------------------------------------|------|

Total Distance: 
$$2\left(\frac{5*0.90}{1-0.90}\right) + 5 = 95$$
 meters (A1)

Method 2: Recognizing this as a geometric series to infinity First term of 5



| Common Ratio $= 0.90$ | (M1) |
|-----------------------|------|
|-----------------------|------|

Recognizing the need to double the distance and subtract 5 (M1)

Total Distance: 
$$2\left(\frac{5}{1-0.90}\right) - 5 = 95$$
 meters (A1)