Graphs of Anti-derivatives

Student Activity

TI-Nspire ${ }^{\text {TM }}$

Activity

Student

50 min

Objective

Plot an antiderivative graph of a given function and make connections between the antiderivative graph and the original function graph.

Exploration

Start a new TI-Nspire document and insert a Graph Application.
Enter the equation: $y=0.5(x+2)(x-3)$

By default this equation will be located in: $f_{1}(x)$. An anti-derivative of this function can be graphed using the definite integral. The definite integral template can be entered from the templates menu or by using the short cut combination: [Shift] + [+]

Note: The use of a 0 and x in the terminals will be explored later.

Question 1:

The anti-derivative graph for each of the following functions will be explored.
a. $\quad y=0.5(x+2)(x-3)$
b. $y=x^{3}-2 x^{2}+x-1$
c. $y=2 \cos ^{2}\left(\frac{x}{2}\right)$
d. $y=\frac{\sin (x)}{x}$
e. $y=200 x \times 2^{-x}$
f. $\quad y=|x|$

For each pair of graphs, comment upon and draw applicable region(s) for the original function and the graph of the anti-derivative where the original function:

- Crosses the x-axis from negative to positive
- Crosses the x-axis from positive to negative
- Has a turning point not touching the x-axis
- Has a turning point touching the x-axis
- Has a stationary point of inflection

Calculator

Tips

- When the equation in $f_{1}(x)$ is updated the anti-derivative updates automatically.
- Zoom Box or Zoom In / Out can be used to focus on specific areas of the graph.
- Graph labels can be automatically hidden via the Graph Application settings menu.

Extension

So far the purpose of the terminals has largely been ignored. Define the graph of $f_{3}(x)$ as:

$$
\int_{1}^{x} f_{1}(x) d x
$$

Define the graph of $f_{4}(x)$ as:

$$
\int_{-1}^{x} f_{1}(x) d x
$$

Question 2:

Comment on how the terminal(s) change the graph of the anti-derivative graph.
Sometimes we know the rate at which a function changes (derivative) but for a variety of regions we are unable to determine the corresponding anti-derivative. For the following two graphs draw the anti-derivative function, remember to cross-check your notes against the various applicable section of each curve.

Question 3:

a)

b)

[^0]
[^0]: (C) Texas Instruments 2018. You may copy, communicate and modify this material for non-commercial educational purposes

