Trig Equations

Topic 3: Geometry and Trigonometry	Trig Equations
(a) Show that $2\sin^2 x + 3\cos x = 0$ can be written as $2\cos^2 x - 3\cos x - 2 = 0$.	[1 mark]

(b) Hence or otherwise, solve $2\sin^2 x + 3\cos x = 0$ for $0 \le x < 2\pi$. [5 marks]

Mark scheme:

- (a) Correct substitution of $\sin^2 x = 1 \cos^2 x$ A1 $2(1 - \cos^2 x) + 3\cos x = 0$ $2\cos^2 x - 3\cos x - 2 = 0$ AG
 - [1 mark]

M1

(b) Attempting to factor

 $(2\cos x + 1)(\cos x - 2)$ A1

OR

Attempting to use the quadratic formula M1

$$\cos x = \frac{3 \pm \sqrt{3^2 - 4 \times 2 \times (-2)}}{2(2)} \left(= \frac{3 \pm 5}{4} \right)$$
A1

Then

$\cos x = -\frac{1}{2}$	A1
2	A1

$$x = \frac{2\pi}{3}, \frac{4\pi}{3}$$
 A1 A1

[5 marks]