\qquad

Problem 1 - Infinite Series

1. Find the next three terms of each infinite series.
a. $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots$
b. $\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\cdots$
c. $2+\frac{3}{2}+\frac{9}{8}+\cdots$

Hint: Divide each of the terms by the first term. What do you notice?
2. Write an expression in terms of n that describes each of the above series using sigma notation.

Problem 2 - Finding the Sum of a Geometric Series

Find the partial sum of these geometric series. To find the sum of a series, press alaha [f 2$] 2$ for summation. Use the arrow keys to maneuver. Notice that you need to type another set of parentheses within the parentheses that are supplied. To show the decimal, press math 2 enter.

3a. $\sum_{n=1}^{8}\left(\frac{1}{3}\right)^{n}=$

| NORMAL FLOAT AUTO REAL RADIAN MP |
| :--- | :--- |
| $\sum_{N=1}^{8}\left(\left(\frac{1}{3}\right)^{N}\right)$ |
| |
| |
| |
| |

3b. $\sum_{n=1}^{6}\left(\frac{1}{2}\right)^{n}=$

4. $\sum_{n=1}^{6} 2\left(\frac{3}{4}\right)^{n-1}=$
\qquad

Problem 3 - Convergence and Divergence of Geometric Series

Use Lists to display the terms of each series.
Press stat enter to access the table of data screen. In L1, enter seq($\mathbf{x}, \mathbf{x}, \mathbf{1}, \mathbf{5 0}$) in the top most cell. The seq(command can be found by pressing 2nd stat [list] and arrowing over to OPS and selecting 5:seq(. Enter the information in the seq exactly as shown in the screen to the right.

In the top most cell of $\mathbf{L} 2$, type $\left(\frac{1}{3}\right)^{L_{1}}$ and enter.

Next we will graph the series.
First we will need to generate a list with the cumulative sums of the terms of the sequence. To do this, move to the top most cell of L3, press enter, then press 2nd stat [list] and arrow over to OPS and select 6:cumSum(. Then type 2nd 2 [L2] and press enter.

This will list the first 50 partial sums of the series in L3.
Repeat these steps for Problems 5, 6, and 7 below.

You can view a graph for each series by creating a scatter plot of the values of the partial sums of the series.

To create a scatter plot, select 2 nd $y=$ [stat plot] 1 .
Set up as shown in the figure to the right.
To view the graph, press zoom 9:ZoomStat.


```
NORMAL FLOAT AUTO REAL RADIAN MP
    PRESS [<] OR [>] TO SELECT AN OPTION
Plot1 Plot2 Plot3
On Off
```



```
Xlist:L1
Ylist:L3
Mark : - + - 
Color: BLUE K>
```

\qquad

To get an even better view of the behavior of the partial sums, you can change the scaling of the x and y-axes. Press window and change each of the following: Xscl: 2 Yscl: 0.2.
The graph should look like the screen shown to the right.

Determine the convergence or divergence of each of the following series. Create a scatter plot of the values or the partial sums to aid in determining the behavior of each series.
5. $\sum_{n=1}^{\infty}\left(\frac{1}{2}\right)^{n}$
6. $\sum_{n=1}^{\infty} 2\left(\frac{3}{4}\right)^{n-1}$
7. $\sum_{n=1}^{\infty} \frac{2}{3}\left(\frac{3}{2}\right)^{n-1}$

