1. Water is being poured into a cone of height $h \mathrm{~cm}$ and base radius r cm . The height of the cone is twice the radius of the base. The height of the water is increasing at a rate of $\frac{1}{3} \mathrm{~cm} / \mathrm{min}$. Find the rate at which the water is being poured, in $\mathrm{cm}^{3} / \mathrm{min}$, when the height is 6 cm .

Mark scheme:

$$
V=\frac{1}{3} \pi r^{2} h
$$

Given: $\quad h=2 r$

$$
\begin{align*}
& r=\frac{1}{2} h \\
& V=\frac{1}{3} \pi\left(\frac{1}{2} h\right)^{2} h \\
& V=\frac{1}{12} \pi h^{3} \tag{M1}
\end{align*}
$$

$\frac{d v}{d t}=\frac{1}{4} \pi h^{2} \frac{d h}{d t}$
$\frac{d v}{d t}=\frac{1}{4} \pi(6)^{2}\left(\frac{1}{3}\right)$
$\frac{d v}{d t}=\frac{1}{4} \pi(36)\left(\frac{1}{3}\right)$
$\frac{d v}{d t}=3 \pi \mathrm{~cm}^{3} / \mathrm{min}$

