1. Erica works for a company that produces metal tins. The tins are created from a metal sheet 6 in. by 6 in. Erica's job is to operate a machine that removes a square, with side length x in., from each corner. See picture below, not drawn to scale.

The remaining metal sheet is sent to a machine that folds up the sides to form a tray. See picture below, not drawn to scale.

(a) Find the length and width of the tray, in terms of x
(b) Show that the volume, $V \mathrm{in}^{3}$, of the tray is $V=4 x^{3}-24 x^{2}+36 x$
(c) Find $\frac{d v}{d x}$
(d) Using your answer from part (c), find the value of x that maximizes the volume of the tin.
(e) Find the maximum volume of the tin

Mark scheme:
(a) Length: $6-2 x$
Width: $6-2 x$
(b) $V=l * w * h$
$V=(6-2 x)(6-2 x)(x)$

$$
V=4 x^{3}-24 x^{2}+36 x
$$

(c) $\frac{d v}{d x}=12 x^{2}-48 x+36$
(d) $0=12 x^{2}-48 x+36$
$0=x^{2}-4 x+3$
$0=(x-3)(x-1)$
$x=3,1$
$x=1$
(e) $V=4(1)^{3}-24(1)^{2}+36(1)$

$$
V=16 \mathrm{in}^{3}
$$

(M1) ft Correct substitution of their length and width into the volume of a rectangular prism formula (A1) ft Correct multiplication of the three polynomials
(A1)(A1)(A1)
(1) Setting their part (c) $=0$
(1) Solving for x
(A1) Knowing that 3 cannot work and that 1 is the solution
(1) ft Correct substitution of their solution from part (d)
(1) ft

