1. Curtis takes medication. After t hours, the concentration of medication left in his bloodstream is given by $M(t)=20(0.5)^{0.55 t}$, where M is in milligrams per liter.
(a) Write down $M(0)$
(b) Find the concentration of medication in his bloodstream after an hour and half
(c) At 2:00pm, when there is no medication in his bloodstream, he takes his first pill. He can take his second pill when the medication concentration reaches $0.45 \mathrm{mg} / \mathrm{L}$. What time can Curtis take his second pill?

Mark scheme:
(a) $M(0)=20$
(b) $M(1.5)=20(0.5)^{(0.55)(1.5)}$
$M(1.5)=11.3 \mathrm{mg} / \mathrm{L}$
(c) $M(t)=45$
$.45-20(0.5)^{.55 t}$
$.0225=(0.5)^{.55 t}$
$\log _{.5} .0225=.55 t$
$t=9.95 \mathrm{hrs}$
He can take his next pill at 12:00am
(A1)

