\qquad

Modeling Damped Motion

Periodic oscillations, such as those experienced by a pendulum as it swings back and forth, occur in very predictable patterns. The motion of such objects can be described mathematically in terms of a simple sinusoidal equation. In the real world, however, resistive forces such as friction are always present and cause damping.

A damped oscillator moves in a modified periodic fashion so that its amplitude gets smaller and smaller with each cycle. Common examples of damped oscillators include an empty rocking chair as it comes to rest after being pushed; a diving board after the swimmer leaves it; and, to some extent, a bungee jumper as he or she slowly bounces to rest at the end of a cord. At first, the problem of modeling this type of motion with a mathematical equation may seem extraordinarily complex, but surprisingly, it can be analyzed rather thoroughly using basic math concepts with which you are already familiar.

In this activity, you will use the Calculator-Based Laboratory $2^{\text {TM }}$ System (CBL $2^{T M}$) to collect motion data as a paper plate attached to a loose spring oscillates up and down above a motion detector. Then you'll use the Voyage ${ }^{\text {TM }} 200$ PLT with DataMate software to find an appropriate mathematical model for the resulting data set.

Instructions

Part A—Setup and Data Collection
Setup
You need:

- 1 CBL 2 unit with unit-to-unit linking cord
- 1 Voyage 200 PLT with DataMate software
- $1 \mathrm{CBR}^{\text {TM }}$ motion detector
- 1 light spring
- 1 standard slotted mass hanger (about 50 grams, found in most science laboratories)
- 1 paper plate

Modeling Damped Motion (Continued)

Data Collection

In this activity, you will record variations in position and velocity as a paper plate attached to a loose spring oscillates up and down above a motion detector.

1. Connect the Voyage ${ }^{\text {TM }} 200$ PLT and CBL $2^{\text {TM }}$ system using the unit-to-unit linking cord. Push firmly on each end of the cord to be sure the connection to each unit is good.
2. Connect the motion detector to the DIG/SONIC port of the CBL 2 system.
3. Attach a paper plate to the end of a standard mass hanger and then attach the hanger to the spring, as shown in the illustration at the beginning of this activity. Place the motion detector face-up on the floor, as shown.
4. Start DataMate by pressing (APPS, selecting DataMate, and pressing ENTER.
5. Press CLEAR to reset DataMate.
6. The spring-plate assembly typically takes about 10 seconds for the amplitude of motion to decay significantly. To collect data for 10 seconds, you need to adjust the data collection parameters.

Press $1 \odot$ ENTER to edit the MODE settings. Press 2) 2 to access the time settings. Enter 0.1 as the time between samples and 100 as the number of samples. Press 1 to return to the setup screen.
7. In order for the zero reference position to be the equilibrium position of the plate, you must zero the motion detector.

Hold the spring-plate assembly at least one meter above the detector. Press 3 to select ZERO from the setup screen, and then press 1 to select DIG-DISTANCE from the SELECT CHANNEL menu. Confirm that the plate is still stationary. Press ENTER to zero the motion detector.
8. When you are ready to start collecting data, pull the plate downward about 10 cm , and allow it to oscillate up and down. Press 2 on your Voyage 200 PLT to start collecting data. A graph of the motion data you are collecting will be displayed.

Modeling Damped Motion (Continued)

9. When data collection is complete, view the motion data by selecting the DIG-DISTANCE graph and pressing ENTER.
10. Your data should show a modified period motion, centered on the x-axis, with amplitudes that decrease noticeably as time passes.

- If your data set is not satisfactory, press ESC 11 and repeat steps $7-9$ to do another trial. Once you zero the motion detector, be sure to keep your hand supporting the spring-plate assembly at a constant height.
- If your data set is satisfactory, sketch a plot of your distance versus time data in the screenshot provided to the right. Be sure to include axes on

Part B—Data Analysis

1. To start, you will attempt to model the motion data you collected using a simple sinusoidal function of the form
$y=a \cos (b(x-c))$,
where
$x=$ time (in seconds),
$y=$ distance (in meters), and
$a=$ the amplitude of the motion, which is the largest distance above or below the center position.

Press © © and © $\mathbb{1}$ to trace along the plot.
Identify the first maximum distance value (y-value), and record it as a in the space below.

$$
a=
$$

meters
2. Identify the time (x-value) at which the first distance maximum occurs, and record it below. Then trace to the second distance maximum, and record its time (x-value) below.
time for first maximum $=$ \qquad seconds
time for second maximum $=$ \qquad seconds

You can now exit DataMate. To do this, press ESC 1 to return to the main screen, and then press 6 to quit. Press \square [GRAPH] to view the graph again. If necessary, press F2 9 to rescale the graph based on your data.

Modeling Damped Motion (Continued)

3. The period of oscillation is the time required for one complete cycle.

Press [calc home] to go to the Home screen.
Calculate the period using the times in step 2 and record your answer below.
period $=$
seconds
4. How many oscillations does the plate make during the natural period of the cosine function? The answer to this question represents the constant b in the equation $y=a \cos (b(x-c))$.

To find b, take the natural period for cosine, 2π, and divide it by the period value found in step 3 . Record the result as b in the space provided below.
$b=$
5. The constant c in the equation $y=a \cos (b(x-c))$ represents the amount by which the cosine function has been shifted horizontally. This value corresponds to the time value for the first maximum found in step 2. Record this value as the horizontal shift in the space below.
$c=$
6. Press $\square[Y=]$ to display the $Y=$ Editor. To clear any existing functions, press F1, select 8:Clear Functions, and press ENTER.

Press ENTER to move the cursor to the entry line, and then press $\mathbf{A} \boldsymbol{x} \boldsymbol{C O S} \square \mathbf{B} \boldsymbol{\square} \square \mathbf{x} \square \mathbf{C} \square$ Press ENTER to store the expression as function y1.
Press [CALC HOME] to return to the Home screen. At the entry line, type the value of a found in step 1 , and then press STO A ENTER to store the value to the variable a on the Voyage ${ }^{\text {TM }} 200$ PLT.

Repeat this procedure to store the values found in step 4 and step 5 to the variables b and c, respectively.

Press [GRAPH] to display the data and the modeling curve on the same screen. Be sure the angle mode is set to radians. How does the modeling equation fit the data horizontally? If necessary, modify the values stored to b and c.

Modeling Damped Motion (Continued)

6. (continued)

How does the modeling equation fit the data vertically? What variable in the equation $y=a \cos (b(x-c))$ should be changed, and how should it be changed to make the curve fit the data?
\qquad
7. To account properly for amplitude variations, you need to create a second mathematical model that describes how the amplitude changes as a function of time. To do this, identify the set of maximum distance values and their corresponding time coordinates as follows:

To start, press \square [CalC HOME] to return to the Home screen. Type DELVAR SYSDATA, and then press ENTER. Press $-[Y=]$ to access the $Y=$ Editor. Turn off the functions by pressing F5 and selecting 3:Functions Off. Return to the plot of motion versus time data by pressing \square [GRAPH].
Press [F3, trace to the first maximum value, and press $\triangle \mathbf{D}$. This operation selects the x - and y coordinates of the cursor location and automatically stores them in the data variable sysdata. Trace to the next maximum, and press $\square \mathbf{D}$ again.
Repeat this procedure for all maximums in the data set.

To see a listing of the maximum distance data, press APPS, highlight the Data/Matrix Editor icon, press ENTER, and select 1:Current. Move the cursor to any cell in column c2 and press F4. Type SYSDATA[1] and press [ENTER. Move the cursor to any cell in column c3 and press F4. Type SYSDATA[2] and press ENTER. The maximum distance values are now listed in columns c2 and c3.

Press F2 \odot F1 to define Plot 2. Press © (1) 1 to set the Plot Type to Scatter; press © (©) 1 to set the Mark to Box; press \odot and type $\mathbf{C 2}$ to define the x-list; press \odot and type C3 to define the y-list.

Press ENTER ENTER to store the plot definition, and then press \rightarrow [GRAPH] to display the original data and highlighted maximums together.

Modeling Damped Motion (Continued)

8. The distance maximums start at some fixed value and continually decrease as time passes. Accordingly, their variations are appropriately modeled using an exponential curve. Use the statistical tools of the Voyage ${ }^{\text {TM }} 200$ PLT to find the exponential equation that best fits the data you found as follows.

To reopen the current Data Editor, press APPS, highlight the Data/Matrix icon, press ENTER, and select 1:Current. To perform an exponential regression on the maximum distance data, press [55 (1) and select 4:ExpReg. Press \odot and type C2 for the x-values; press \odot and type $\mathbf{C 3}$ for the y-values.

Press $\odot(1) \odot \odot$ ENTER to store the regression equation to y2. Press ENTER again to perform the calculation.

Copy the complete ExpReg equation that appears in the dialog box in the space below.

Press \rightarrow [GRAPH] to see the data and exponential regression curve together. How well does this equation fit the distance maximums?
9. The reason the original modeling equation, $y=a \cos (b(x-c))$, provided a poor fit is that the amplitude value, a, was fixed. As you have just seen, the appropriate amplitude expression, y 2 , changes continually with time. So, to fit the original motion data completely, you'll need to replace the constant value, a, with the dynamic expression, y 2 .

To do this, press $\rightarrow[\gamma=]$. Turn off the functions by pressing F5 and selecting 3 :Functions. Move the cursor to highlight equation y1. Press ENTER to copy y1 to the entry line, and press (1) to position the cursor at the beginning of the expression.

Press $\square[D E L]$ to remove the constant a from the equation. Press Y2 $\square \mathbf{X} \square$ ENTER to make y2 the new amplitude expression in equation y 1 .
Press \rightarrow [GRAPH $]$ to see the original motion data together with the new modeling curve. How well does this curve fit the data?

Modeling Damped Motion (Continued)

Extension for Calculus

1. What would a plot of velocity versus time look like for the damped oscillations you studied in this activity? Create a statistical plot of velocity versus time. Note that the time and velocity values are found in columns c1 and c7, respectively, of the data variable named cbldata.
2. Use your Voyage ${ }^{\text {TM }} 200$ Personal Learning Tool's computational tools to find a mathematical equation that models velocity as a function of time. It is possible to create this model in just one step with the Voyage 200 PLT.

How well does your modeling curve fit the data?

Modeling Damped Motion (Continued)

Questions

1. Would it be possible to completely fit the motion data using a sine model rather than a cosine model? Specifically, which variable(s) in the equation $y 1=y 2 \cos (b(x-c))$ would have to be adjusted? Record the modified equation in the space below.

Check your prediction by storing new values to b and/or c. Then press $\bullet[\gamma=]$, and modify the $y 1$ equation. Press \rightarrow [GRAPH] to view the modified equation. How well does it fit?
2. Suppose that your friend is resting on a playground swing. You start your friend moving with a small push and continue to push once each cycle. If the resulting amplitudes get larger and larger with each cycle, the result is called antidamping.
Describe how a short-term model for this situation might differ from the equation used in this activity if the oscillation amplitudes increased by approximately the same percentage during each swing.
3. What would a plot of velocity versus distance look like for the damped oscillator studied in this activity? Record your prediction on a separate sheet of paper.

While the CBL $2^{\text {TM }}$ system was recording distance values during the damping activity, velocity values were being computed simultaneously and are stored in your Voyage ${ }^{\text {TM }} 200$ PLT in the Data/Matrix Editor. To view a plot of velocity versus distance, press $[Y=]$ F5 and select 1:All Off to turn off all plots and functions. Press Θ to scroll above the $y(x)$ functions, highlight a plot that is not defined, and press ENTER.

Press (1) 2 to set Plot Type to xyline; press $\odot(1) 5$ to set Mark to Dot; press \odot and type $\mathbf{C 6}$ to define the x-list; press Θ and type $\mathbf{C 7}$ to define the y-list. Press ENTER ENTER to store the plot definition, and then press F2 and select 9:ZoomData to display the plot.

How does the velocity-versus-time plot compare with your prediction? Use your own words to explain exactly why this plot has such a peculiar shape.

