$\qquad$

## Problem 1 - Row Reduction Method

Consider the system of equations:
$2 x+y=5$
$5 x+3 y=13$
Let's use matrices to solve this system. Use a 2 by 2 matrix for the left side and a $2 \times 1$ for the right side.

Press 2nd [matrx] to access the MATRIX menu. Right arrow to EDIT and select 1:[A]. Define matrix A as a 2 row by 2 column matrix by typing over the dimensions in the top line. Press ENTER.

Type in the coefficients of $x$ in the first column and $y$ in the second column as shown.


Now you need to augment matrices $A$ and $B$ into matrix C. From the Home screen, press 2nd [matrx], arrow to MATH and select 7:augment(.

Now enter [A], [B]. To do this press [2nd [MATRX] $1 \square$ 2nd [MATRX] 2. Press ENTER to execute the command and augment A and B .


Store the result in matrix C. Press $5 T 0 \pm 2 n d$ [MATRX] and select 3:[C]. Press ENTER.

The next step to solve the system would be to eliminate $x$ by multiplying the first equation by -2.5 and adding it to the second equation. This can be done using row operations.

Access the MATRIX menu, arrow to MATH and select F:*row+(.
(This command multiplies a row and adds it to another row.)

Enter -2.5, [C], 1, 2). This tells the calculator to "multiply by -2.5 matrix C's first row, and add the result in the second row."

Press ENTER. This will NOT replace matrix C. Store the result in matrix D as you did for matrix C .

- What is your result?

The goal is to get the coefficient of $y$ to be 1. To do this requires doubling the second row.

In the MATRIX > MATH menu, select E:*row(.
(This command multiplies a row.)


WRHES FTHTH EDITT

H: ref
B: r-réc
C: rowsuga

E: $+7 \times 6$


*rows2,[C1],2)

Enter 2, [D], 2). This tells the calculator to "multiply by 2 matrix D's second row."

Press ENTER. Store the result in matrix D (replace it).

- What is your result?

The next step to solve the system would be to eliminate $y$ by multiplying the second equation by -1 and adding it to the first equation.

In the MATRIX > MATH menu, select F:*row+(.
Enter -1, [D], 2, 1). This means: "multiply by -1 matrix D's second row and add it to the first row."

Store the result in matrix $D$.

- What is your result?

The goal here is to get the coefficient of $x$ to be 1 . To do this requires halving the first row.

Enter the command *row(0.5, [D], 1). This means: "multiply by 0.5 matrix D's first row."

- What is your result?

The resulting matrix is in reduced row-echelon form. The last column indicates the solution to the system.

- What is the coordinate pair?


## Problem 2 - Inverse Method

Now let's use a quick method for using matrices to solve systems. Recall that matrix A contains the coefficients of $x$ and $y$ and matrix $B$ contains the constants.

To do this, multiply the inverse of matrix $A$ by matrix $B$.
Enter the command $[\mathrm{A}]^{-1} *[\mathrm{~B}]$ and press ENTER. The resulting matrix contains the solution.

- How does this solution compare to the solution in Problem 1?

