Teacher Information (Continued)

Activity 4
 Using Linear Programming in Real-Life Problems

For this exercise, students should have some knowledge of linear and quadratic equations.

Answers to Instructions

1. $C=1.7 x+1.2 y$
2. (b) $x+y \geq 6$; (c) $y \leq 5$
3. (b) $y \geq 6-x$; (c) $y \leq 5$
4. See illustration at right.
5. The vertex coordinates are $(1,5),(2,4)$, and $(2.5,5)$.

6.

\boldsymbol{x} coordinates: c1	\boldsymbol{y} coordinates: c2	objective function: c3
1	5	7.7
2	4	8.2
2.5	5	10.25

9. \quad Minimum cost $=\$ 7.70$.

The teacher should bake one dozen oatmeal-raisin cookies and five dozen chocolate chip cookies.

Answers to Questions

1. maximum feasible number oatmeal-raisin $=2.5$ doz. minimum feasible number chocolate chip $=4 \mathrm{doz}$.
2. No, because the constraints $x+y \geq 6$ and $y \leq 5$ cannot both be true when $x=0$
3. Generally, the feasible region can have as many sides as there are constraints; for five constraints, the feasible region could be a pentagon.
4. Yes, if the feasible region is not bounded.

Teacher Information (Continued)

Activity 4

Using Linear Programming in Real-Life Problems
(Continued)
Answers to Extra Practice

1. Vertices for part a: $(-3,8),(1.25,3.75),(2.67,8)$.
minimum $=2 ;$ maximum $=13.34$
Vertices for part b: $(0,3),(0,15),(3,3)(5.4,4.2)$.
minimum $=-45 ;$ maximum $=14.4$
2. Make 90 long-sleeve and 165 short-sleeve shirts to maximize profits at $\$ 855$.
3. Make 44 high tops and 95 running shoes to maximize profits at $\$ 2,027$.
