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Parametric and
Polar Graphing

CHAPTER 3

The ease with which most graphing calculators handle the
graphing of parametric equations has brought the topic of
parametric equations to a new level of prominence in the
study of precalculus and calculus. In this chapter we give an
introduction to parametric and polar graphing on the TI-86.
The keystroke instructions in this chapter are less detailed
since the features discussed in the first two chapters also
apply in the parametric and polar graphing modes.

§1 - Initial Mode and Format Settings

Set the mode and graph format settings as shown in

(3.1.1) and (3.1.2), respectively.

(3.1.1)

Clear all functions in the (E(t)=) graph editor by

using the (DELS) selection.

(3.1.2)

§2 - Graphing a Circle Using Parametric Equations

1. Enter the pair of parametric equations

x=5cos(t)
y = bsin(t)

as shown in (3.2.1).

(3.2.1)

2. Set the WINDOW variables as shown in (3.2.2) and
(3.2.3), where tMax and tStep are 37/2 and 1/2,

respectively.

(3.2.2)
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Parametric and Polar Graphing (Continued)

3. Then graph to obtain (3.2.4). The graph is obtained
by plotting and then connecting the points obtained
with the ¢ values, starting with tMin and
incremented by the value of tStep until a ¢ value
larger than tMax is obtained. In this case, the graph
is obtained by connecting the four points

(5cos(t), 5sin(t)), t=0, #/2,m,3n/2.

§3 — The Importance of tStep

1. Change the setting of tStep to 0.05 as shown in
(3.3.1).

2. Regraph to obtain (3.3.2).

3. Note that the TI-86 traces out the graph in the
counterclockwise sense starting at the point (5, 0).
Next change tStep to 0.01 as shown in (3.3.3).

4. Regraph to obtain (3.3.4). Notice that it takes
considerably longer for the TI-86 to obtain (3.3.4)
than it did to obtain (3.3.2). Thus, from (3.2.4),
(3.3.2), (3.3.4) and the time required to obtain them,
it is clear that careful consideration should be given
to the choice of tStep.

(3.2.3)

(3.2.4)

(3.3.1)

(3.3.2)

(3.3.3)

(3.3.4)
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Parametric and Polar Graphing (Continued)

§4 - Using (ZSQR) to Make a Circle Look Like a Circle

1. With the WINDOW settings as shown in (3.2.3) and f
(3.3.1), select (ZOOM) and then (ZSQR) to obtain ‘r/-*—_\\
(3.4.1), the expected graph of the pair of parametric : !

equations in §2 over the f-interval [0, 3n/2]. \\-_

|| ECt= | HIND | 200M I TRACE TGRAFHF

(3.4.1)

&

WINDOW

tMin=8

tMax=4,712385898838

tSter=,085

®Min=-16.997BE74427

®xMax=16.9970674427
JxScl=1

FEito= TriNp T zo0M TTRACE IGRAFH b |

Select (WIND) to obtain (3.4.2) and (3.4.3).

(3.4.2)

WINDOL
TxMin=-16.9970674437
®*Max=16.9978674487
®5cl=1
uMin=-18
dgMax=16
gScl=1
IEtt= THING T 2000 T TRACE TGRAFA

Note that the (ZSQR) option did not change tMin,
tMax, or tStep.

(3.4.3)

§5 - Using Negative tStep Values

Negative values of tStep are also possible if we interpret the roles of tMin, tMax, and tStep
correctly. Actually the names tMin and tMax are misnomers. Better names would have been tInitial
and tFinal, respectively. With this observation you have probably guessed how we will proceed to
graph the parametric equations in §2 over the t-interval [0, 3n/2] using a negative tStep.

WINDOL
tMin=4.712322892032
tMax=8
t5ter=-.85
®Min=-16,997B674427
®Max=16.9970674427

LxScl=1

FEtt= THIND T 200 TTRACE IGRAFH b

1. Set tMin = 371/2, tMax = 0, and tStep = —0.05 as
shown in (3.5.1). Leave the other WINDOW settings
as in (3.4.3). Then regraph to obtain (3.4.1) again,
except this time the graph is traced out in the
clockwise direction starting from the point (0, -5).

(3.5.1)

© TEXAS INSTRUMENTS INCORPORATED USING THE T1-86, CHAPTER 3 41



Parametric and Polar Graphing (Continued)

§6 — Graphing the Inverse of a Function

The parametric graphing mode on the TI-86 gives a very nice way to obtain the graph of f'(x) given
a one-to-one function f(x). We graph y = f() in parametric mode by graphing the pair of parametric

equations
{r =
y=ft)
The graph of y = f' () results from graphing
x=f(t)
y=t

in parametric mode.

1.

As an example, let’s graph f(x)= (22 +7)/(x +3) and

its inverse [ () in the [-10, 10, 1] x [-10, 10, 1]
viewing window.

Set the WINDOW as shown in (3.6.1) and (3.6.2).

Enter
xtl=t, ytl=(2t+7)/(t+3)

as shown in (3.6.3).

Then graph to obtain (3.6.4), the graph of y = f(x)
in the desired viewing window.

Next enter
xt2=ytl, yt2=uxtl

as shown in (3.6.5)

Graph only the (2, yt2) pair to obtain (3.6.6), the
graph of y = f'(x) in the desired viewing window.

(3.6.1)

(3.6.2)

(3.6.3)

(3.6.4)

(3.6.5)

(3.6.6)

WIHDOL

FEtty= THiND T 200 T TRACE IGRAFA S

LWIIHOOW

txMin=-18
xMax=18@
x5cl1=1
gMin=-16
dJMax=18
gScl=1

Il Ecty= | WIND | 200 T TRACE IGRAFAE |

Flotli FPlotz Flots
~xt1Bt
gt1B8¢(2 t+7)-(L+3)

B WINDG Z00M TRACE GRAFH
DELF RSELCTR

IEcty= THING T 200M TTRACE IGRAFHE |

Flotl Flokz Flotz

wxtl=t

gt 1=(2t+7 2/ (L+3D
sxtZ2Batl

gt 28t 1

IEFEE WIND  200M TRACE SRAFH

DELF NSELCTM

|

—

FEtt= THiNG T zo0m I TRACE TGRAFRY

42 USING THE TI-86, CHAPTER 3

© TEXAS INSTRUMENTS INCORPORATED



Parametric and Polar Graphing (Continued)

§7 - Inverse Functions and Symmetry

It is worth considering a second example of the type done in the previous section in order to
emphasize that the viewing window being used can be a significant factor in how we interpret what
appears on the screen.

1. In particular, let’s graph f(x)= Jz and its inverse \":ﬁ E?tz Flot3
together in the viewing window [0, 10, 5] x [0, 20, 5]. HE%%ES:I
As indicated in (3.7.1), enter f(x)= Jx Gt 2Bxt1
parametrically as the pair (xtl, y{1), and enter ﬁ MIND  Z00M TRACE GRAPH
DELF ISELCTH

S (x) as the pair (xt2 = yt1, yt2 = xtl). 37.1)

2. With tMin = 0, tMax =20, tStep = .05, the resulting
graph in (3.7.2) seems to violate the notion that the
graph of a function and its inverse will be symmetric
about the y = x line. This is because the viewing
window is such that a line of slope one does not

appear to be inclined at 45 degrees. (3.7.2)

3. From (3.7.2), select (ZOOM) (ZSQR) to obtain a
viewing window in which adjustments have been
made for the fact that there are more horizontal
pixels than vertical pixels. See (3.7.3).

(3.7.3)

In other words, the (ZSQR) option creates a viewing window in which one unit horizontally is the
same distance on the screen as one unit vertically. Consequently, we see the expected symmetry of
JS(x) and its inverse with respect to the y = x line.

§8 - Finding Roots of 1

Recall that the n n" roots of 1 are given by x + iy, where (z, %) are the n points on the unit circle
given by
(cos(t),sin(®)), t=0, 2n/n , 4n/n , 6x/n ,..., (n—1)(2n/n) .

We can use the parametric mode and (TRACE) to find these roots of 1.

1. Asan example, we find the three cube roots of 1. Flotl Plotz Flots
; . s#¢t1Bcos t
Set xtl = cos(t), yt1=sin(t) as shown in (3.8.1). utiBsin t

|- HIND 200 TERCE GREAFH

(3.8.1)
2. Set tMin = 0, tMax = 2x, tStep = 21/3 as shown in WINDOL
tMin=
(3.8.2). tMax=6.28318536718
tStep=2.089439518239.
*Min=-2
xMax=
JxScl=1
TEft= THIND T 2001 I TRACE IGRAFH k
(3.8.2)
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Parametric and Polar Graphing (Continued)

3. Set xMin = yMin = -2, xMax = yMax = 2 as shown
in (3.8.3).

4. Then graph and use (TRACE) to obtain the results
shown in (3.8.4)—(3.8.6). Thus we see that the three
cube roots of 1 are approximated by 1,

-0.5 + 0.866025403797, and —0.5 — 0.8660254038i.

Of course, we know that the exact cube roots are
givenby 1,—1/2+4+/3 /2, and -1/2-iy3 /2.

(3.8.3)

(3.8.4)

(3.8.5)

(3.8.6)

W IHDOW
txMin=-2

FEct= THiND T 2001 TTRACETGRAPHE
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x=-.k

w= - BEEOZEHOZE

Although this procedure is pedagogically appealing and can be generalized to find the n n" roots of
any non-zero complex number o, a more efficient way to find the roots of o is to solve 2" —a =0

using the POLY feature of the TI-86. See Chapter 4.
§9 — Graphing a Cycloid

There are several famous and significant parametric curves encountered in the study of calculus. One

of these is the cycloid given by

{;z: =2(t-sin t)

y=2(1-cos t)

This curve can be thought of as the path traveled by a
point on the circumference of a circle of radius 2 as the
circle rolls down the positive x-axis if the point was at
the origin at time zero.

1. Enter these equations in the (E(t)=) graph editor
and set the WINDOW as indicated in (3.9.1) through
(3.9.3).

(3.9.1)

(3.9.2)

(3.9.3)

Fleti Plotz Plot:
sxblBZ2Ct-sin L)
gt 182¢1-cos L3

IEFEN 14IND 2000 TRACE GRAPH
t xk vt D DELF NSELCTH

WINDOW
tMin=0
tMax=20
tStep=.1
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4xS5cl=5
IEct= THinD | Z00M I TRACE IGRAFHE

WINDOW
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Parametric and Polar Graphing (Continued)

2. The resulting graph is shown in (3.9.4).

3. Since we are dealing with a graph related to some

property of a circle, it is appropriate here to perform

a (ZSQR) operation to get a better perspective on
the shape of this curve. From (3.9.4), select
(ZOOM) (ZSQR) to obtain the graph in (3.9.5).

4. In figure (3.9.6), we have used the TRACE feature of
the TI-86 to see that when ¢ = 2x, the corresponding

x-value is the expected 4x since the circle in this
problem has radius 2.

A

IEtto= T NG | 200r T TRACE IGRAFRE

(3.9.4)

|I 2FIT |2$'2It IETRIG IZDEEHIEDHTH} |

(3.9.5)

(3.9.6)

The cycloid curve also provides a solution to the famous brachistochrone problem of finding the
path of quickest descent a frictionless bead located at the origin will travel in moving to a lower
point not located directly beneath the origin. The curve which provides the quickest descent turns
out to be a portion of an inverted cycloid which has a cusp at the origin and which passes through
the second point. We can easily generate such a curve by modifying the parametric equations for

the standard cycloid.

o

In particular, if we wanted to see an inverted
version of the cycloid shown in (3.9.6) we just
deselect the (xt1, ytl) pair and enter the following
for xt2 and yt2. Namely, xt2 = xtl and yt2 = —ytl as
shown in (3.9.7).

6. Then graph to obtain (3.9.8).

Flotl Flotz Flots
sxbl=2¢t-=1in
gtl=2(1-co=
sxb2Bxt]l
gt 28 -gtl

IGEE HIND

cror
M

Z00M TRACE GRAFH

DELF BSELCTE

(3.9.7)
I Elki= l HIND I 200 ITRI’ICE IGRHPH} |
(3.9.8)
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Parametric and Polar Graphing (Continued)

§10 — Graphing a Line Segment

The problem of graphing a line segment joining two points in the plane also can be handled easily
using the parametric graphing features of the TI-86.

1.

For example, it is not difficult to show that the line
segment joining the points (a,b) and (¢,d) can be
generated by the equations

{r:(l-r)a+tc

y=(1-t)b+td’

<t<lL

To graph the line segment connecting the points
(1, 2) and (7, 4), we enter the equations above as the
(xt3, yt3) pair shown in (3.10.1) and (3.10.2).

Change the viewing window as shown in (3.10.3)
and (3.10.4). Note that we use 0 <t <1.

The resulting graph plotting from (1, 2) to the point
(7, 4) is shown in (3.10.5). To plot the graph in such
a way that the line segment draws from (7, 4) to

(1, 2), we just let tMin have value 1 and take

tMax = 0 with tStep = —0.05.

(3.10.1)

(3.10.2)

(3.10.3)

(3.10.4)

(3.10.5)
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Parametric and Polar Graphing (Continued)

§11 — Further Evidence of the Importance of tStep

The ability of the TI-86 to graph parametric equations can also lead to important mathematical

discussions.
In particular, consider the parametric equations given by

{x =tcos(2brt)

y=tsin(25m¢)

Figures (3.11.1)—(3.11.4) are the respective graphs of this
pair of equations in the viewing window

[-10, 10, 1] x [-10, 10, 1] as ¢ ranges from 0 to 4

for tStep values of 0.1, 0.2, 0.01, 0.05.

We leave as an exercise for the reader to decide
which screen image most accurately describes the
actual graph of this pair of equations.

§12 - Polar Graphing

Polar coordinate graphing mode principles are very
similar to those of the parametric graphing mode. We
illustrate by examining the graph of the four-leaved rose
r=8sin(26) in the viewing window [-10, 10, 1] x

[-10, 10, 1].

1. Set the mode and graph format settings as shown in
(3.12.1) and (3.12.2), respectively.

(3.11.1)

(3.11.2)

(3.11.3)

(3.11.4)

(3.12.1)

(3.12.2)

| ECt)= § WIND I 200 FTRACE IGRAPH K
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MEt= I WIND I 200M 1 TRACE IGRRPHF
tStep value .2
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tStep value .01
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tStep value .05
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Parametric and Polar Graphing (Continued)

2.

Enter the equation r1 =8sin(20) as shown in
(3.12.3),

and set the WINDOW as indicated in (3.12.4) and
(3.12.5) where 6Max = 2.

The role of 6Step is analogous to that of tStep in
the parametric mode.

Then graph to obtain (3.12.6).

In (3.12.7) and (3.12.8) we use (EVAL) to find that
when 6 = 2n/3 the rectangular coordinates of the

point on the curve are x = 3.4641016151 and y = —6.

§13 - Displaying Polar Coordinates

L.

When graphing in the polar coordinate mode, it is
usually desired to give the curve coordinates in
polar coordinates rather than rectangular
coordinates. We accomplish this by changing the
graph format mode to that shown in (3.13.1).

(3.12.3)

(3.12.4)

(3.12.5)

(3.12.6)

(3.12.7)

(3.12.8)

(3.13.1)

Ploti Plotz Plots
~1BE sin (2 82

E
WINOOW
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BMax=6.283185368718
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1xScl=1
I¥i3= ThiND T 200t TTRACETGEAFA

WIHDOW
TxMin=-18
#*Max=18
®5cl=1
gMin=-1@
dJMax=10
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Parametric and Polar Graphing (Continued)

2. Then when we use (EVAL), as in (3.12.7), we obtain
(3.13.2), which indicates that » = —6.92820323 when
0 = 2r/3. Incidentally, notice from (3.13.2) that the
TI-86 handles negative r correctly when graphing in
the polar coordinate mode.

§14 - False Asymptotes in Polar Graphing

(3.13.2)

v=-6.92B20323 B2 034385102y

In §18 of Chapter 2 we considered the phenomenon of the graphing of false asymptotes by the TI-S6.
In this section we will see that similar things can happen in the polar graphing mode as well.

1. Enterr2 = 2/8 in the (r(0)) editor after deselecting
1 for graphing.

It is clear from the form of 72 that »2 is small when
61is large, and large in absolute value when 6is near
to zero. It is less obvious that the line y = 2 is an
asymptote for the graph of 2. We will graph »2 in
the viewing window [-5, 5, 1] x [-2, 3, 1].

2. Set the WINDOW variables as indicated in (3.14.1)
and (3.14.2), where 6Max is actually 4.

3. From (3.14.2) select (GRAPH) to obtain the spiral
graph shown in (3.14.3).

4. Return to the WINDOW variables and change the
value of 6Min to —4r, leaving all other values as they
were in (3.14.1) and (3.14.2). The resulting graph is
shown in (3.14.4).

5. It seems as though the TI-86 was clever enough to
sketch in the y = 2 asymptote. But, in fact, this is the
polar graphing mode version of a false asymptote.
As with graphing in the function mode, we can
change the style of the graph of 72 to the Dot style
as shown in (3.14.5), and regraph to obtain (3.14.6).

(3.14.1)

(3.14.2)

(3.14.3)

(3.14.4)

(3.14.5)

LW THOOL
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Parametric and Polar Graphing (Continued)

This graph confirms that the horizontal line across

the top of the screen in (3.14.4) is not really part of

the graph of 2. Rather it resulted from the

calculator connecting a point plotted for a negative

O near to zero (and its correspondingly large in

absolute value negative r value) with a point plotted (3.14.6)
for a positive 8 value near to zero (and its

correspondingly large positive r value).

HIND § 200M N TRACE IGRAFH I

Exercises

1. Adjust the window in §4 so that the graph is a closed circle.
2. Verify graphically using parametric equations that the inverse of e is In .

3. Find the five fifth roots of 32 by imitating the technique used in §8 to find the cube roots of 1.

4. Verify graphically using the polar mode that the graphs of r = ﬁ and r = c0258 are horizontal
and vertical lines, respectively. Explain why this is the case.

5. (a) Graph the parametric equations

x=2t—sint
y=2-cost

Compare with the graph of the cycloid done in §9.

(b) Do the same for

x=2t-2.5sint
y=2-25cost’

Use BOX ZOOM to carefully study the lower part of one of the cycles on this graph.

6. Consider the equations

Y
r=—-—"
1+¢
g 2t

Show that the graph of this pair of equations for —1 <{ <1 is the right half of the unit circle.
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