124 DIFFERENTIAL EQUATIONS WITH THE TI-86

Chapter 9: Space Trajectories

1. The LANDSAT-4 orbit parameters are approximately 7'= 99 min = 5940 s, r = 7,088,978.63292
m, and v = 7,498.54653018 m/s. Using this information to set the viewing window and the initial
conditions as in Examples 1 and 2, you get a circular orbit out a little further from the Earth’s
surface than the shuttle in Example 2.

2. Starting at the circular orbit with the larger radius r, = 7,859,745 m, you move to the smaller
radius 7, = 6,711,505 m by first applying

~Av, = ~286.345827452

to leave the outer circular orbit. Then apply

~Avy =-297.886857671

at some time when the Hohmann transfer orbit touches the inner circular orbit.

3. Assuming a circular orbit with radius » = 3.844 E8 m, the period of such a lunar orbit would be
T =2371843.4052 s = 27.4518912639 days. (Alternatively, assuming a circular orbit with period
T = 27.321661 days = 2360591.5104 s, you get a radius of r = 383183321.767 m A 3.832 E5 km.)
Since a circular model doesn't fit the observed values very well, try an elliptical model, namely
a Hohmann transfer orbit between theoretical circular orbits at the extremes of the observed
radii. Using r, = 3.564 E8 m and r, = 4.067 E8 m, you get a transfer period of T, = 2345514.54703
s = 27.1471591092 days. To plot this, one needs either the velocity at the perifocal distance (r,,
the position on the orbit closest to the center of the earth) which will be

2 2
d i % 1091.84611706 m/s

or the velocity at the apofocal distance (r,, the position on the orbit furthest from the center of
the earth) which will be

)
vy — Avy = ,GMeJ———i
NN o956 808350432 s,

4. Stationary points on the x-axis satisfy

GM Gm 2( mD )
— — +o7| X- 10
XXl (x-D)IXx-D M+m

Here you search for a root with X < 0, so both absolute-value terms can be replaced by
negatives.

The equation to be solved reduces to the fifth-degree polynomial in X. Remembering
0)2 B G (M + m)
D’
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this gives

M(X—D)2+mX2+(M+m)X2(X—D)2(X— il )zo_
M+m

Looking at the graph, you see a root approximately at —D. Using [SOLVER] on the TI-86 with a
seed value ~D for X and bound = { -1 E99, 0}, you find that [, = ~381675404.68362 m (which is
slightly greater than ~D = ~384400000 m).

In a manner similar to Exercise 4, you search for a root with 0 < X < D, so the terms are
X=X g IX=Dl=-(X-D)
The equation to be solved reduces to the fifth-degree polynomial in X. Remembering
GM+m
o - S m)

this gives

M(X = DY — mX? — (M +m)X* (X - D)Z(X - A/’1n+ij = 0.

Looking at the graph, you see a root approximately at 3.26 E8. Using [SOLVER] on the TI-86 with
this seed value for X and bound = {0, D}, you find that [, = 326380918.21025 m.

In a manner similar to Exercise 4, you search for a root with D < X, so the terms are
X=X g IX— Dl = (X~ D),
The equation to be solved reduces to the fifth-degree polynomial in X. Remembering

o G(A;I);m)

this gives

M(X = DY — mX? — (M +m)X> (X - D)Z(X = A;"+Dm) = 0.

Looking at the graph, you see a root approximately at 4.48 E8. Using [SOLVER] on the TI-86 with
this seed value for X and bound = {D, 1 E99}, you find that [, = 448914836.87933 m.

Since the Sun-Jupiter ratio M/m is about 1.047 E3 (while the Earth-Moon ratio M/m is about
0.813 E2), Jupiter has less influence in this restricted three-body problem.

The trajectories you find are similar to the actual trajectories on space missions to the moon.
The big difference is that an actual mission will make minor mid-course corrections, and will
probably major Av thrusts to move into and out of parking orbits near each large body.
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