Part A: Intersection of a line with a parabola

a. Algebra method

Use an algebraic method to find the points of intersection between the line with equation $y=6 x+22$ and the parabola with equation $y=3 x^{2}-6 x+7$. Show how the 'discriminant' of an appropriate quadratic equation indicates that two solutions are expected and thus, that the graphs have two intersection points. Technology check: Use Solve to confirm your solutions.

$$
\begin{aligned}
3 x^{2}-6 x+7 & =6 x+22 \\
3 x^{2}-12 x-15 & =0 \\
3(x+1)(x-5) & =0 \\
x & =-1 \text { or } 5 \\
y & =-6+22 \\
& =16 \\
y & =30+22 \\
& =52
\end{aligned}
$$

Solve($\left.3 x^{2}-6 x+7=6 x+22, x\right)$ enter

$$
\begin{aligned}
3 x^{2}-12 x-15 & =0 \\
\Delta & =b^{2}-4 a c \\
& =(-12)^{2}-4 \times 3 \times-15 \\
& =144+240 \\
& =384
\end{aligned}
$$

two solutions as discriminant is positive

thus points of intersection are $(-1,16)$ and $(5,52)$

Graphing Method

Using an appropriate Window, draw the graphs on the calculator and confirm intersection points using Intersection. State the x and y values used for the graph window.

- Window

$$
\begin{aligned}
& x \min =-6 \\
& x \max =6 \\
& x \mathrm{scl}=1 \\
& y \min =-10 \\
& y \max =70 \\
& y \mathrm{scl}=10
\end{aligned}
$$

- $\mathbf{Y}=$

$$
y 1=6 x+22
$$

$$
y 2=3 x^{2}-6 x+7
$$

- Graph

F5; 5(Intersection); enter; enter; Lower bound $x=-2$; Upper bound $x=0$; enter Intersection point is $(-1,16)$

F5; 5(Intersection); enter; enter; Lower bound $x=0$; Upper bound $x=6$; enter Intersection point is $(5,52)$

Use the Table of values from the calculator to further confirm results.

- TblSet

TblStart....... -2
Δ tbl............ 1
enter;enter

- Table

Identify points of intersection

Sketch the graph of each equation on the same set of axes and mark the points of intersection. With the graphs, display an appropriate table of values that show intersection points, as found from the calculator.

	See above for table of values

b. Perform the same procedures as a. to find and confirm:
i. one point of intersection between the line with equation $y=-16 x+2$ and the parabola with equation $y=5 x^{2}-6 x+7$.

$$
\begin{aligned}
5 x^{2}-6 x+7 & =-16 x+2 \\
5 x^{2}+10 x+5 & =0 \\
5(x+1)(x+1) & =0 \\
5(x+1)^{2} & =0 \\
x & =-1 \\
y & =18
\end{aligned}
$$

$$
\begin{aligned}
5 x^{2}+10 x+5 & =0 \\
\Delta & =b^{2}-4 a c \\
& =10^{2}-4 \times 5 \times 5 \\
& =100-100 \\
& =0
\end{aligned}
$$

one solution as discriminant is zero

Solve($\left.5 x^{2}-6 x+7=-16 x+2, x\right)$ enter

- Window

$$
\begin{aligned}
& x \min =-8 \\
& x \max =8 \\
& x \mathrm{scl}=1 \\
& y \min =-10 \\
& y \max =70 \\
& y \mathrm{scl}=10
\end{aligned}
$$

- $\mathbf{Y}=$
$y 1=-16 x+2$
$y 2=5 x^{2}-6 x+7$

- Graph

F5; 5(Intersection); enter; enter; Lower bound $x=-2$; Upper bound $x=0$; enter
Intersection point is $(-1,18)$

- TblSet

TblStart....... -2
Δ tbl.
........... 1
enter;enter

- Table

Identify point of intersection

See above for solutions
ii. no intersection points between the line with equation $y=2 x-4$ and the parabola

$$
y=3 x^{2}-6 x+7
$$

$$
\begin{aligned}
3 x^{2}-6 x+7 & =2 x-4 \\
3 x^{2}-8 x+11 & =0
\end{aligned}
$$

no real solutions
no points of intersection

Solve $\left(3 x^{2}-6 x+7=2 x-4, x\right)$ enter

$$
\begin{aligned}
3 x^{2}-8 x+11 & =0 \\
\Delta & =b^{2}-4 a c \\
& =(-8)^{2}-4 \times 3 \times 11 \\
& =64-132 \\
& =-64
\end{aligned}
$$

no solutions as discriminant is negative

- $\mathbf{Y}=$

$$
\begin{aligned}
& y 1=2 x-4 \\
& y 2=3 x^{2}-6 x+7
\end{aligned}
$$

-Graph

F5; 5(Intersection); enter; enter; Lower bound $x=-8$; Upper bound $x=8$; enter
No solution found

- TblSet

TblStart....... - 2
Δ tbl. ... 1
enter; enter

- Table

No intersection points

See above for table of values
c. Summarise the findings in an appropriate table, including how the 'discriminant' indicates the number of intersection points between the parabola and the line.

Line	Parabola	Quadratic equation for points of intersection	Discriminant	Points of intersection
$y=6 x+22$	$y=3 x^{2}-6 x+7$	$3 x^{2}-12 x-15=0$	$\Delta=324$ positive $\rightarrow 2$ sols	$(-1,16),(5,52)$
$y=-16 x+2$	$y=5 x^{2}-6 x+7$	$5 x^{2}+10 x+5=0$	$\Delta=0$ zero $\rightarrow 1$ sols	$(-1,18)$
$y=2 x-4$	$y=3 x^{2}-6 x+7$	$3 x^{2}-8 x+11=0$	$\Delta=-20$ negative $\rightarrow 0$ sols	No real solutions

Part B: Intersection of a line with a circle

a. Algebra method

Use an algebraic method to find the points of intersection between the line with equation $y=2 x+4$ and the circle with equation $x^{2}+y^{2}=9$. Show how the 'discriminant' of an appropriate quadratic equation indicates that two solutions are expected and thus, that the graphs have two intersection points.
Technology check: Use Solve to confirm your solutions.
$x^{2}+(2 x+4)^{2}=9$
$5 x^{2}+16 x+7=0$
$x=\frac{-16 \pm \sqrt{(16)^{2}-4 \times 5 \times 7}}{2 \times 5}$
$=\frac{-8 \pm \sqrt{29}}{5}$
substitute $x=\frac{-8 \pm \sqrt{29}}{5}$ in $y=2 x+4$
solutions are
$\left(\frac{-8+\sqrt{29}}{5}, \frac{4+2 \sqrt{29}}{5}\right),\left(\frac{-8-\sqrt{29}}{5}, \frac{4-2 \sqrt{29}}{5}\right)$
$x^{2}+y^{2}=9 \mid y=2 x+4$

Solve($\left.5 x^{2}+16 x+16=9, x\right)$ enter

$$
\begin{aligned}
5 x^{2}+16 x+16 & =0 \\
\Delta & =b^{2}-4 a c \\
& =(16)^{2}-4 \times 5 \times 7 \\
& =256-140 \\
& =116
\end{aligned}
$$

two solutions as discriminant is positive
$2 x+4 \left\lvert\, x=\frac{-8+\sqrt{29}}{5}\right.$
$2 x+4 \left\lvert\, x=\frac{-8-\sqrt{29}}{5}\right.$

thus points of intersection are $\left(\frac{-8+\sqrt{29}}{5}, \frac{4+2 \sqrt{29}}{5}\right),\left(\frac{-8-\sqrt{29}}{5}, \frac{4-2 \sqrt{29}}{5}\right)$.

Graphing method

Using an appropriate Window, draw the graphs on the calculator and confirm intersection points using Intersection. State the x and y values used for the graph window.

- Window

$$
\begin{aligned}
& x \min =-4 \\
& x \max =4 \\
& x \mathrm{scl}=1 \\
& y \min =-4 \\
& y \max =4 \\
& y \mathrm{scl}=1
\end{aligned}
$$

- $\mathbf{Y}=$

$$
\begin{aligned}
& y 1=2 x=4 \\
& y 2=\sqrt{9-x^{2}} \\
& y 3=-\sqrt{9-x^{2}}
\end{aligned}
$$

- Graph; F2, 5,

Enter

Lower bound $x=-3$; Upper bound $x=-2$; enter (gives decimal approximation)

F5; 5(Intersection); enter; enter; Lower bound $x=-2$; Upper bound $x=0$; enter (gives decimal approximation)

The Table of values from the calculator can only confirm approximate solutions.

- TblSet

TblStart.......-2.67703
Δ tbl............0.00001
enter;enter

- Table

Identify points of intersection

- TblSet

TblStart.......-0.0522967
Δ tbl............0.00001
enter;enter

- Table

Identify points of intersection

Sketch the graph of each equation on the same set of axes and mark the points of intersection. With the graphs, display an appropriate table of values that show intersection points, as found from the calculator.
b. Perform the same procedures as a. to find and confirm:
i. one point of intersection between the line with equation $y=x+6$ and the circle with equation $x^{2}+y^{2}=18$.
ii. no intersection points between the line with equation $y=x-4$ and the circle with equation $(x-1)^{2}+(y-2)^{2}=9$.
c. Summarise the findings in an appropriate table, including how the 'discriminant' indicates the number of intersection points between the parabola and the line.

Part C: Intersection of a straight line with a rectangular hyperbola

a. Use an algebraic method to find the points of intersection between the line with equation $y=4 x-7$ and the hyperbola with equation $y=\frac{1}{x-2}$. Show how the 'discriminant' of an appropriate quadratic equation indicates that two solutions are expected and thus, that the graphs have two intersection points. Technology check: Use Solve to confirm your solutions.

Using an appropriate Window, draw the graphs on the calculator and confirm intersection points using Intersection. State the x and y values used for the graph window.

Use the Table of values from the calculator to further confirm results.
Sketch the graph of each equation on the same set of axes and mark the points of intersection. With the graphs, display an appropriate table of values that show intersection points, as found from the calculator.
b. Perform the same procedures as a. to find and confirm:
i. one point of intersection between the line with equation $x=6$ and the hyperbola with equation $y=\frac{1}{x-4}$.
ii. no intersection points between the line with equation $y=-x-4$ and the hyperbola with equation $y=\frac{1}{x+3}$.
c. Summarise the findings in an appropriate table, including how the 'discriminant' indicates the number of intersection points between the parabola and the line.

Part D: General Case for the points of intersection between a line and a parabola

a. Use an algebraic method to find the points of intersection between the line with equation $y=p x+q$ and the parabola with equation $y=a x^{2}+b x+c$, where $a=1$. Show that the 'discriminant' of an appropriate quadratic equation to determine the number of points of intersection is $\Delta=(b-p)^{2}-4(c-q)$.
b. If $b=3 ; c=2$ and $p=1$, find the values of q that would allow i. one point of intersection; ii. two points of intersection; iii. no points of intersection. Give an example of each.
Technology check: Use Solve to confirm your solutions.
For i. and ii., use an appropriate Window, draw the graphs on the calculator and confirm intersection points using Intersection.

Sketch the graph of each equation on the same set of axes and mark the points of intersection. With the graphs, display an appropriate table of values that show intersection points, as found from the calculator.
c. If $b=3 ; c=2$ and $q=1$, find the values of p that would allow i. one point of intersection; ii. two points of intersection; iii. no points of intersection. Give an example of each.
Technology check: Use Solve to confirm your solutions.
For i. and ii., use an appropriate Window, draw the graphs on the calculator and confirm intersection points using Intersection.

Sketch the graph of each equation on the same set of axes and mark the points of intersection. With the graphs, display an appropriate table of values that show intersection points, as found from the calculator.
d. Give a brief discussion of the findings between Part D, b. and c.

