Math Objectives

- Students will explore the relationship between chords of a circle and their perpendicular bisectors.
- Students will discover that the perpendicular bisector of a chord always passes through the center of a circle.
- Students will discover that a line perpendicular to a chord that passes through the center of a circle always bisects the chord. Students then apply these relationships to right triangles.
- Students will discover that two chords are congruent if and only if they are equidistant from the center of a circle.

Vocabulary

- chord of a circle
- perpendicular bisector
- equidistant

About the Lesson

- The estimated time for this activity is 45 minutes.
- For information regarding the creation of the file Chords_of_a_Circle.tns, refer to Chords_of_a_Circle_Create.doc.
- Students can either create the .tns file by following the instructions given in *Chords_of_a_Circle_Create.doc*, or they can use the pre-constructed file entitled *Chords_of_a_Circle.tns*.

TI-Nspire[™] Navigator[™] System

- Use Screen Capture to observe students' work as they proceed through the activity.
- Use Live Presenter to have a student illustrate how he/she used a certain tool.

TI-Nspire[™] Technology Skills:

- Download a TI-Nspire document
- Open a document
- Move between pages
- Grab and drag a point

Tech Tips:

- Make sure the font size on your TI-Nspire handheld is set to Medium.
- Once a function has been graphed, the entry line can be shown by pressing ctrl G.
 The entry line can also be expanded or collapsed by clicking the chevron.

Lesson Materials:

Create Instructions Chords_of_a_Circle_Create.pdf

Student Activity Chords_of_a_Circle_Student.pdf Chords_of_a_Circle_Student. doc *TI-Nspire document* Chords_of_a_Circle.tns

Visit <u>www.mathnspired.com</u> for lesson updates and tech tip videos.

Discussion Points and Possible Answers

Tech Tip: If students experience difficulty dragging a point, check to make sure that they have moved the arrow until it becomes a hand (a). Press [ctrl] to grab the point and close the hand (a).

Move to page 1.2.

 \overline{AB} is a chord of circle *O* because its endpoints lie on the circle. Construct the perpendicular bisector of \overline{AB} by pressing **Menu > Construction > Perpendicular Bisector**. Click \overline{AB} and press esc to exit.

1. Drag point A or B. What do you observe about the perpendicular bisector of \overline{AB} ?

<u>Answer:</u> The perpendicular bisector of \overline{AB} always passes through point O, the center of the circle.

Teacher Tip: The points on a perpendicular bisector are those that are equidistant from the endpoints of the segment. Therefore the center of the circle is on that bisector.

Move to page 1.3.

Construct a line through point *O* that is perpendicular to \overline{AB} . Press **Menu > Construction > Perpendicular.** Click point *O*, and then click \overline{AB} .

Plot the intersection point of AB and the perpendicular line.
 Press Menu > Points & Lines > Intersection Point(s). Click AB and the line perpendicular to AB. Label this point M by immediately pressing Ishift M. Press esc to exit.

Measure the lengths of AM and MB. Press Menu >
 Measurement > Length. Click point A, click point M, move the measurement to the inside of the circle close to the middle of AM, and press . Then click point M, click point B, move the measurement to the inside of the circle close to the middle of MB, and press . Then press esc to exit.

2. Drag point *A* or *B*. What is the relationship between \overline{AM} and \overline{MB} ?

<u>Answer:</u> The lengths of \overline{AM} and \overline{MB} are always the same. $\overline{AM} \cong \overline{MB}$.

Teacher Tip: Why? Note that this is only a perpendicular construction (not a perpendicular bisector construction). You can use HL congruence between $\triangle AOM$ and $\triangle BOM$. These are right triangles by perpendicular construction; *AO* and *BO* are radii and *OM* is a common side.

3. When the length of \overline{AB} is as short as possible, what do you observe about \overline{OM} ?

<u>Answer:</u> When the length of \overline{AB} is as short as possible, points A and B converge to a single point and \overline{OM} becomes the radius of the circle.

4. When the length of AB is as long as possible, what do you observe?

<u>Answer:</u> When the length of \overline{AB} is as long as possible, \overline{AB} passes through point *O* and becomes the diameter of the circle. Midpoint *M* coincides with center *O*.

Move to page 1.4.

Construct the midpoint of \overline{AB} . Press **Menu > Construction > Midpoint**. Click \overline{AB} and label this point *M* by immediately pressing $\widehat{\mathbf{w}}$ shift **M**. Press **esc** to exit.

- Create OM by pressing Menu > Points & Lines > Segment.
 Click point O, and then click point M. Press esc to exit.
- Measure *DAMO* by pressing Menu > Measurement > Angle.
 Click point *A*, then click point *M*, and then click point *O*. Press
 esc to exit. Note: you may need to grab and move either the letter *M* or the 90°.
 - Create radius AO by pressing Menu > Points & Lines >
 Segment. Click point A, and then click point O. Press esc to exit.
- 5. What type of triangle is $\triangle AMO$?

Answer: $\triangle AMO$ is a right triangle.

6. When given the lengths of any 2 sides of $\triangle AMO$, what equation can be used to find the length of the third side?

<u>Answer</u>: For a right triangle with leg length of *a* and *b* and hypotenuse *c*, the Pythagorean Theorem tells us $a^2 + b^2 = c^2$.

7. If AB = 6 and AO = 5, find the length of \overline{OM} .

Answer: OM = 4

Teacher Tip: Remind students to half the measure of segment AB.

Move to page 1.5.

Drag points A, B, and C until $\overline{FO} \cong \overline{EO}$.

8. What is the relationship between \overline{AB} and \overline{CD} ?

<u>Answer:</u> The lengths of \overline{AB} and \overline{CD} are equal. $\overline{AB} \cong \overline{CD}$.

Teacher Tip: Have a discussion with students about rounding. To avoid cluttering the screen, the document is showing only a few digits. It may be possible to have FO = EO but $AB \neq CD$.

9. Drag points *A*, *B*, *C*, and *D* until $\overline{AB} \cong \overline{CD}$. What is the relationship between \overline{FO} and \overline{EO} ? <u>Answer:</u> The lengths of \overline{FO} and \overline{EO} are equal. $\overline{FO} \cong \overline{EO}$.

Teacher Tip: Same comment as above. It is possible to have AB = CD but $FO \neq EO$.

€ 1.3 1.4 1.5 >	*Chords_of TR 🔻	
	A FO=4 EO=5 AB=1 CD=3	.2 cm