Math Objectives

- Students will explore the relationship between chords of a circle and their perpendicular bisectors.
- Students will discover that the perpendicular bisector of a chord always passes through the center of a circle.
- Students will discover that a line perpendicular to a chord that passes through the center of a circle always bisects the chord. Students then apply these relationships to right triangles.
- Students will discover that two chords are congruent if and only if they are equidistant from the center of a circle.

Vocabulary

- chord of a circle
- perpendicular bisector
- equidistant

About the Lesson

- The estimated time for this activity is 45 minutes.
- For information regarding the creation of the file Chords_of_a_Circle.tns, refer to Chords_of_a_Circle_Create.doc.
- Students can either create the .tns file by following the instructions given in Chords_of_a_Circle_Create.doc, or they can use the pre-constructed file entitled Chords_of_a_Circle.tns.

TI-Nspire ${ }^{\text {TM }}$ Navigator ${ }^{\text {TM }}$ System

- Use Screen Capture to observe students' work as they proceed through the activity.
- Use Live Presenter to have a student illustrate how he/she used a certain tool.

TI-Nspire ${ }^{\text {TM }}$ Technology Skills:

- Download a TI-Nspire document
- Open a document
- Move between pages
- Grab and drag a point

Tech Tips:

- Make sure the font size on your TI-Nspire handheld is set to Medium.
- Once a function has been graphed, the entry line can be shown by pressing atri \mathbf{G}. The entry line can also be expanded or collapsed by clicking the chevron.

Lesson Materials:

Create Instructions
Chords_of_a_Circle_Create.pdf

Student Activity

Chords_of_a_Circle_Student.pdf Chords_of_a_Circle_Student. doc
TI-Nspire document
Chords_of_a_Circle.tns

Visit www.mathnspired.com for lesson updates and tech tip videos.

Chords of a Circle

Discussion Points and Possible Answers

Tech Tip: If students experience difficulty dragging a point, check to make sure that they have moved the arrow until it becomes a hand (ㄱ). . Press ctrl

Move to page 1.2.

$\overline{A B}$ is a chord of circle O because its endpoints lie on the circle. Construct the perpendicular bisector of $\overline{A B}$ by pressing Menu > Construction > Perpendicular Bisector. Click $\overline{A B}$ and press esc to exit.

1. Drag point A or B. What do you observe about the perpendicular bisector of $\overline{A B}$?

Answer: The perpendicular bisector of $A B$ always passes through point O, the center of the circle.

Teacher Tip: The points on a perpendicular bisector are those that are equidistant from the endpoints of the segment. Therefore the center of the circle is on that bisector.

Move to page 1.3.

Construct a line through point O that is perpendicular to $\overline{A B}$. Press Menu > Construction > Perpendicular. Click point O, and then click $\overline{A B}$.

- Plot the intersection point of $A B$ and the perpendicular line. Press Menu > Points \& Lines > Intersection Point(s). Click
 $\overline{A B}$ and the line perpendicular to $\overline{A B}$. Label this point M by immediately pressing $\widehat{4}$ shift \boldsymbol{M}. Press esc to exit.
- Measure the lengths of $\overline{A M}$ and $\overline{M B}$. Press Menu > Measurement > Length. Click point A, click point M, move the measurement to the inside of the circle close to the middle of $\overline{A M}$, and press 蓠. Then click point M, click point B, move the measurement to the inside of the circle close to the middle of $\overline{M B}$, and press 䍘. Then press esc to exit.

2. Drag point A or B. What is the relationship between $\overline{A M}$ and $\overline{M B}$?

Answer: The lengths of $\overline{A M}$ and $\overline{M B}$ are always the same. $\overline{A M} \cong \overline{M B}$.

Teacher Tip: Why? Note that this is only a perpendicular construction (not a perpendicular bisector construction). You can use HL congruence between $\triangle A O M$ and $\triangle B O M$. These are right triangles by perpendicular construction; $A O$ and $B O$ are radii and $O M$ is a common side.
3. When the length of $\overline{A B}$ is as short as possible, what do you observe about $\overline{O M}$?

Answer: When the length of $\overline{A B}$ is as short as possible, points A and B converge to a single point and $\overline{O M}$ becomes the radius of the circle.
4. When the length of $\overline{A B}$ is as long as possible, what do you observe?

Answer: When the length of $\overline{A B}$ is as long as possible, $\overline{A B}$ passes through point O and becomes the diameter of the circle. Midpoint M coincides with center O.

Move to page 1.4.

Construct the midpoint of $\overline{A B}$. Press Menu > Construction >
Midpoint. Click $\overline{A B}$ and label this point M by immediately pressing ©shift \boldsymbol{M}. Press esc to exit.

- Create $\overline{O M}$ by pressing Menu $>$ Points \& Lines $>$ Segment. Click point O, and then click point M. Press esc to exit.
- Measure $A M O$ by pressing Menu $>$ Measurement $>$ Angle. Click point A, then click point M, and then click point O. Press esc to exit. Note: you may need to grab and move either the letter M or the 90°.
- Create radius $\overline{A O}$ by pressing Menu > Points \& Lines > Segment. Click point A, and then click point O. Press esc to
 exit.

5. What type of triangle is $\triangle A M O$?

Answer: $\triangle A M O$ is a right triangle.
6. When given the lengths of any 2 sides of $\triangle A M O$, what equation can be used to find the length of the third side?

Answer: For a right triangle with leg length of a and b and hypotenuse c, the Pythagorean Theorem tells us $a^{2}+b^{2}=c^{2}$.
7. If $A B=6$ and $A O=5$, find the length of $\overline{O M}$.

Answer: $\overline{O M}=4$

Teacher Tip: Remind students to half the measure of segment AB.

Move to page 1.5.

Drag points A, B, and C until $\overline{F O} \cong \overline{E O}$.
8. What is the relationship between $\overline{A B}$ and $\overline{C D}$?

Answer: The lengths of $\overline{A B}$ and $\overline{C D}$ are equal. $\overline{A B} \cong \overline{C D}$.

Teacher Tip: Have a discussion with students about rounding. To avoid cluttering the screen, the document is showing only a few digits. It may be possible to have $F O=E O$ but $A B \neq C D$.
9. Drag points A, B, C, and D until $\overline{A B} \cong \overline{C D}$. What is the relationship between $\overline{F O}$ and $\overline{E O}$? Answer: The lengths of $F O$ and $E O$ are equal. $F O \cong E O$.

Teacher Tip: Same comment as above. It is possible to have $A B=C D$ but $F O \neq E O$.

