Dynamic Geometry: Program Basics
 A Thirty-Minute Presentation

Featuring Cabri ${ }^{\circledR}$ Jr,
An "APPS" Program For the TI-83 Plus ${ }^{\text {TM }}$ and TI 84™

Dynamic Geometry: Program Basics

Cabri® Jr. is a menu driven geometry program that can dynamically present mathematical concepts. Using Cabri Jr., you can:

- Draw points, segments, lines, circles, triangles and quadrilaterals.
- Construct perpendicular and parallel lines; perpendicular and angle bisectors; and geometric loci.
- Transform objects through translation, reflection, rotation, and dilation.
- Compute lengths, areas, perimeters, and angle values of relevant objects.
- Display coordinates and equations of lines and circles.

Each tool is selected displaying the appropriate menu by pressing a function key, highlighting the desired tool, and then pressing ENTER.

Function Keys (Blue keys on the top of the calculator)
When a function key is pressed, a menu of tools or submenus is displayed.
\square is $\mathbf{F} 1$
\square is F2is F3is $\mathbf{F} 4$

- is F5

Menus

F1 (口)

Note Even though the menu items do not list numbers, they are numbered starting with the top item as 1 . Help on the F1 menu is 3.

Some menu items contain a right arrow () that indicates that there is a submenu item available. Use the up and down arrow keys to highlight menu items and use the right arrow key to display a submenu. Use up and down arrow keys to move within a submenu.

Some menu items end with ..., which indicates that a dialog box will appear when that item is selected.

- Open Carbi Jr. by pressing the (1) key.
(The APPS listed on your calculator may be different from those listed below.)

- Press the corresponding number for Cabri Jr. or cursor down, highlight CabriJr and press ENTER.

- Press any key. (One of the basic graphic screens will be displayed.)

The screen with the axis or the screen without the axis should appear. The F1 menu may appear on a blank screen.

- If the F1 menu appears, press CLEAR to display the screen with or without the axes shown.

Hide/Show Axes

The Hide/Show menu (F5) has a submenu that allows you to hide or show the coordinate axes.

- Open the F5 menu and select Hide/Show.
- Use the right arrow key to display the submenu and use the down arrow key to highlight Axes.

When the axes are displayed, selecting Hide/Show:Axes will hide the axes. When the axes are hidden, selecting Hide/Show: Axes will show the axes.

- Toggle between showing the axes and hiding the axes.

Exploration 1: Perpendicular Bisectors of the Sides of a Triangle

- Hide the coordinate axes to begin this activity.

Create a Triangle

- Select the Triangle tool (F2).

Note The triangle in the upper left hand corner indicates that the Triangle tool is selected. The pointer has changed from a black arrow to a Pen (or Pen Pointer).

The Pen is the construction tool for drawing an object. The cursor stays a

- Press ENTER to place the first vertex of the triangle on the screen.

The point briefly flashes to indicate the point of the first vertex but it may be hard to see.

- Press the right arrow to move the Pen to the right side of the screen. A dotted segment is formed and the Pen moves.
- Press ENTER to create the second vertex of the triangle. The point briefly flashes.

- Move the Pen up, then left to indicate the third vertex of the triangle. Make an acute scalene triangle.
- Press ENTER to set the point.

The dotted lines turn solid and form a triangle.

- Press the CLEAR key to disengage the triangle tool.

The cursor turned into a Transparent Arrow, which indicates a moveable object (points, labels, lines, segments, circles, measures, coordinated, equations) is near.

Measure the Angles

We are interested in the angle measures as we change the shape of the triangle so that we can investigate what happens to perpendicular bisectors in different types of triangles. Three points are used to measure an angle. The angle determined by the middle point is the angle that is measured.

- Highlight the Measure:Angle tool by pressing F5, highlighting Measure, displaying the submenu by using the right arrow key, and highlighting Angle.

- Press ENTER. to activate the Measure:Angle tool.

The transparent arrow turns into a Pen. Note the angle with the degree sign in the upper left hand corner of the screen.

Measure the left vertex. The left vertex will be the middle point for the measurement of the left vertex.

- Move the cursor the top vertex and press ENTER to select the top vertex as the first point. The point will briefly flash.
- Cursor down to the vertex on the left until the point blinks. If the lower segment is dotted, you have not gone over far enough.
- Press ENTER to select the second vertex. The point flashes.
- Move the cursor to the right to select the third vertex and press ENTER.

The measure is moved near to corresponding vertex with the hand attached. The hand is attached so you can move the measure to a desirable position by using the arrow keys.

- Move the measure of the angle down and back to the left so it will be in a better position.
- Press CLEAR to disengage the dragging tool to place the measure and return to Measure:Angle tool. The cursor turns back into a Pen.

Measure the right vertex's angle.

- Move the Pen to the left vertex. Press ENTER. It flashes.
- Move to the right vertex, then press ENTER.
- Move to the top vertex, then press ENTER.

You have measured the angle at the right. Its measure appears near the corresponding vertex with a hand attached.

- Move it down a little. Press CLEAR.

Measure the top vertex's angle.

- Select the right vertex.
- Select the top vertex. Press ENTER.
- Select left vertex.

The measure is near the corresponding vertex with the hand attached.

- Move it up a little. Press CLEAR.

The top measure is established and displayed.

- Move the measure above the vertex.
- Disengage the Measure:Angle tool by pressing Clear and getting an Solid Arrow cursor.
- Move the Arrow away from the upper vertex.

Perpendicular Bisectors

Create the three perpendicular bisectors on the three sides of the triangle.

- Select Perp. Bis. (F3).

- Press ENTER. The pen reappears.
- Move it near a segment that forms a side of the triangle and press ENTER. You will see a black horizontal arrow and the segment will slimmer.
- Press ENTER and a perpendicular bisector is drawn.
- Move the cursor (which will become a Pen again when it leaves the area near the first segment) to another side.
- When the second side is selected (it shimmers), press ENTER to create the segments perpendicular bisector.

- Move the cursor to the third side and press ENTER.
- Press CLEAR to disengage the perpendicular bisector tool.

Make a conjecture about the intersection of the perpendicular bisectors of the sides of a triangle.

Move the triangle.

- Move the cursor to the top vertex.
- Press ALPHA, then move the vertex with the Arrow Keys.

- Press CLEAR to disengage the dragging tool.

Create a point where the three perpendicular bisector intersect.

- Move the cursor near the intersection point of the three perpendicular bisectors.
- Select Point:Intersection (F2) (All 3 lines should be flashing).
- Press ENTER to create the point.
- Press CLEAR to disengage the Point:Intersection tool.

Now hide the three perpendicular bisectors and leave only the intersection point.

- Select Hide/Show (F5), then choose Objects.

- Press ENTER to engage the Hide/Show:Objects tool. The eraser cursor is displayed.
- Move the cursor so it is pointing to the last line drawn. The eraser is displayed and the line is flashing.
- Press ENTER to hide the line.

The line changes to dotted until the cursor is moved away from the object.

- Move the cursor to the other two lines and press ENTER.
- Press CLEAR.
- Move the cursor away from the lines and all three are now hidden.

Make a conjecture about the position of the point of intersection of the perpendicular bisectors of the triangle when all angles are acute.

- Move the arrow to the top vertex. The black arrow will turn transparent when you get near the vertex and the point will blink.

- Press the ALPHA key and drag the top vertex until the bottom left angle is 90°.

Make a conjecture about the intersection of the perpendicular bisectors of a triangle when the triangle is right.

- Move the cursor so that the left angle is obtuse.

Make a conjecture about the intersection of the perpendicular bisectors of the sides of the triangle in this case.

Exploration 2: The sum of the measures of the angles of a triangle.

- Open a new Cabri window by selecting New (F1).

F1
Arimotes
しrido
H:1F $\quad \underset{F}{ }$
[140
DFELI...
Sulv

Duit

- Draw a triangle and then press CLEAR after the triangle is drawn.

- Use Measure:Angle to display the measure of each of the three angles.

- Select the Calculate tool (F5).

- Press ENTER to select the tool.

- Move the Black Arrow to the right bottom number.
- When the Black Arrow is horizontal and the number is flashing, press ENTER.
- Press \langle (The + sign is highlighted in the upper left box).

- Move the cursor to left bottom number and press ENTER.

The sum appears near the left vertex with a hand attached.

- Move the number to the right and press CLEAR.

- Move the cursor until the sum is flashing and press ENTER.
- Move the cursor to the number at the top vertex until it flashes and press ENTER.

The sum appears near the vertex with the hand attached.

- Move up to a clear area and press CLEAR.

The sum is 180 . Due to rounding the sum of the numbers showing on the screen may not be exactly 180 but it should be close.

- Press CLEAR again and the Black Arrow should appear.

- Move the cursor over to the top vertex and press ALPHA. The hand appears.
- Move the vertex and observe what happens to the sum.

- Move the vertex again.

Make a conjecture about the sum of the angles of a triangle.

