Exploring Quadratic Transformations with TI-Nspire Algebra II

Teacher Guide

Created by: Ray Fox, Overton High School

Lisa Baranoski, Antioch High School

Activity Overview

Students will explore the characteristics of a quadratic function.

TN Algebra II Standards:

CLE 3103.3.2 Understand, analyze, transform and generalize mathematical patterns, relations and functions using properties and various representations. (Level 4 on Webb's Depth of Knowledge)

SPI 3103.3.10 Identify and/or graph a variety of functions and their translations.

- ✓ 3103.3.4 Analyze the effect of changing various parameters on functions and their graphs.
- ✓ 3103.3.11 Describe and articulate the characteristics and parameters of a parent function.
 - **▶** Open the TI-Nspire document Exploring Quadratic Transformations
 - > Press (ctr) ≥ to move to page 1.2 and begin the lesson
- 1. Write the <u>vertex form</u> of a quadratic function.
- 2. Observe the characteristics of the quadratic parent graph on page 1.2.

List the characteristics observed:

Answers will vary. Teacher will be looking for:

"U" shape graph; opens upward; looks like a smile; the graph goes through (0, 0) or the origin; a = 1; h and k equal zero.

Exploring "a."

- 3. Increase and decrease the value of "a." Describe what is happening to the function. Possible answers: The graph opens upward when a > 0. When a < 0, the graph opens downward. When 0 < a < 1 and -1 < a < 0, the function is wider. When a < -1 and a > 1, the graph is stretched up or down.
- 4. Complete the statements below.

When "a" positive, the function *opens upward*.

(Maximum or Minimum)

When "a" negative, the function *opens downward*.

(Maximum or **Minimum**)

Exploring Quadratic Transformations with TI-Nspire Algebra II

Teacher Guide

5. What happens when a = 0 and -1 < a < 1? The graph is a horizontal line. y = 0 (Explain to the students mathematically by substituting zero in for a in the vertex form of the quadratic function.) Reinforce that when a is between -1 and 1, the function is wider.

Exploring "h."

6. Increase and decrease the value of "h." Describe what is happening to the function. The function moves *left and right*.

7. Complete the statements below. When "h" positive, the function <u>moves right.</u>

When "h" negative, the function <u>moves left.</u>

Exploring "k."

8. Increase and decrease the value of "k." Describe what is happening to the function. The function moves *up and down*.

9. Complete the statements below. When "k" positive, the function *moves up*.

When "k" negative, the function <u>moves down.</u>

10. Use your TI-Nspire to discover **how to find the Vertex?**

Parameters: $a = 1$	This is called the parent function .
h = 0	Vertex form: $y = 1(x - 0)^2 + 0$
k = 0	Simplify $y = x^2$
	Identify the coordinates of the minimum. $(0, 0)$
Parameters: $a = 1$	How did the function move? <i>The function moved to the right 3</i>
h = 3	units.
k = 0	Vertex form: $y = 1(x-3)^2$
	Identify the coordinates of the minimum. $(3, 0)$
Parameters: $a = -2$	How did the function move? <i>The function moved to the right 1.5</i>
h = 1.5	units and up 2 units.
k = 2	Vertex form: $y = -2(x-1.5)^2 + 2$
	Identify the coordinates of the minimum. (1.5, 2)
Parameters: $a = .7$	How did the function move? The function moved left 2 units and
h = -2	down 3.5 units.
k = -3.5	Vertex form: $y = .7(x+2)^2 - 3.5$
	Identify the coordinates of the minimum. (-2, -3.5)

11. Define vertex. (Use h, k and vertex form in your definition) **Possible answer:** <u>The vertex of a quadratic function is where the maximum or minimum is located at (h, k). You can also find the vertex from vertex for.</u>

Exploring Quadratic Transformations with TI-Nspire Algebra II

Teacher Guide

Assessment:

On a piece of paper, do the following:

- o Make a sketch of the quadratic functions.
- o Identify the vertex.
- o Is there a maximum or minimum? Why?

a.)
$$y = 2(x-2)^2 + 3$$

Vertex: (2, 3); minimum

c.)
$$y = -\frac{1}{4}(x-5)^2 - 2$$

Vertex: (5, -2); *maximum*

b.)
$$y = -(x+1)^2 + 4$$

Vertex: (-1, 4); *maximum*

d.)
$$y = 4(x+2)^2$$

Vertex: (-2, 0); *minimum*