Solving Differential Equations via
The Fundamental Theorem of Calculus

By Dave Slomer

Some differential equations are downright easy to solve, SU%M as8x?, which has the
X

general solutiony = x* + C. Many others are not nearly so easy and some are impossible
to solve symbolically.

For example, suppose you have to solve the differential equ%%om‘xg with initial
X

conditiony(1) = 2. But you can't find an antiderivative et . You try your TI-89, but
it's stuck, too (see fig. 1).
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You can use numeric or graphical methods, sudfuées’s methodandslope fieldsto

get a feefor the naturef the solution. These are built into your TI-89 in “differential
equation graphing mode”. Their visual clues about the solution of the given differential
equation (defined in figure 2b) are shown in figure 2a. The dark function in figure 2a is

the Euler's method solutiongg =¥ if y(1) = 2. Call the solutiog = E(X). Since the
X

graph ofE is traceable, you could find out as much as you might want to about the
solution, making a table of values by tracing to as many points as you care to.
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Exercise 1Fill in the second column of Table 1 (below) with trace values from the Euler

solution { = E(X)). [Get into differential equation graphing mode (pf®8BE] (] (6]) and set it up as
shown above in figures 2b through 2d. To do so, gvek§e] [F1]) and, makeg/1'=e”(-x"2)) and set0=1



andyil=2 to establish the given initial conditigfil)=2. Then, pre§s] (1] and use the cursor to change the
GRAPH FORMATS screen to match figure 2c. Finally, prég4r2] and make the window match what is
shown in figure 2d. Finally, pre§s [F3] to see the graph affd] to trace]

Table 1:

X

E(X) (approx. value)

1
N

1
'_\

NFR|O

Exercise 2Change th&olution Method from EULER to RK (refer to figure 2c). This
method, short for “Runge-Kutta”, offers better accuracy but is slower because of the
added complexity of the method. Label the third column of the table above)™RiK¢d

fill it in by tracing.

Yes, you DO have better things to do than fill in tables! Let the '89 do the work. But how?

While no “closed form” solution exists for antiderivativesedf , the Fundamental
Theorem of Calculus (which demonstrates that integration and differentiation are inverse
operations) says that we can alwéipsl an antiderivative of angontinuous function. So,

Ie‘x2 dx:J'Xe“zdt for any choice of the constaatsincey = e is continuous for al.
a

At first, this looks and feels like the ol’ runaround. But, trusting your '89 to compute
derivatives correctly, just key ¢ (e(-t"2),t,a,x),x) and read the result. The integral

fe‘tz dt is a function ok because is the upper limit, so it makes sense to graph
a

functions defined by equations such&(x) =J';(e't2dt. Such functions are calledea
functions So it makes sense to find the derivative of an area function with respgect to

Exercise 3Explain why result of[¢ (e(-t"2),t,a,x),x) proves thaE[ “edtis an

. . . 2
antiderivative ofe™ .

Of course, there are infinitely many antiderivative®df , as the slope field suggests
(fig. 2a). Would the general antiderivative herej'aﬁe‘tzdt becausea is an unknown
constant? Or should you add on the usual con€tathis is answered in Exercise 10.



Meanwhile, for a specific value of the lower limjtyou might go td-unction graphing

MODE], storeIXe‘tzdt intoyl, and have the '89 draw the graph. You could then also look
a

at a table of value$you could even try to find (or write) a TI-89 program that computes approximate

values of definite integrals and run it for a bunch’'sf]

But how do you choos&? (Forget about whether you need to &ifbr now. One thing at a time.)
Determininga by trial-and-error is tempting (though not for long).

Defineyl= (e”(-t"2),t,a,x) and experiment with on the home screen (as in figure 3a).
This is easy enough, and who knows what it might tell us? Store 8 amtd recally1(x)
to see thayl looks right, as it does in figure 3a below.
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But if you graph, even if you setes=9(meaning to plot points at every ixel), you

will wonder when that first point is going to show upygur '89 has begun graphing, you can
presdON] to stop it. Or let it crank. It'll stop sooner or later, one way or anotke@nputingy1(-4)

[for example]on the home screen takes a fairly long time (explaining why graphing takes
so long) but at least you get to see a value (fig. 3b).

So, try the '89’s table feature, which only calculates 5 function values at a time. Plotting
the 5 points will likely tell you whetherl is defined correctly. Make the table start at -2
and up by 1's[To do so presg] and makablStart = -2 andAtbl = 1; then presg] to see the

table.] The table looks like so:

-2, - BERAg1
-1, ~. r46E24
o,
- T4EEEd
- 222031

Fig. 4
Figure 4 shows thatl does not pass through the initial point (1,2)aso0 is wrong,

having causegl to pass through (1,0.746834pproximately] missing (1,2) by about

1.253 units. Adding that nasty approximatioryias tempting(Could this beC?). But

noting that (0,0) is on this area function and that those appear to be exact coordinates
gives hope for an exabhitt. It's time to quit trial-and-error and analyze.

Exercise 4.You needy1(1) = 2 Exactly2. How might you choosgin light of this?

Hint: Fill in the blank in the definition of1 below with a number that will maké (1)
exactlyequal 0, making (1,0) an exapbint on the graph
yl= eN-t"2),t,__ X



Keep analyzing. Just make sure tyhtl) = 2(not 0) and that the derivative pf with
respect txis e . It won't take too long to find this unique specific solution correctly.

Exercise 50nce you have found the rightlabel column 4 of Table ly1(x)” and fill it
in. Compare it with the Euler’'s method and “RK” method values. You can do this on the
home screen, oneat a time, or use the '89’s table feature, as was done in figure 4.

Exercise 6:Analyze all four columns of Table 1. Make some guesses about the relative
accuracy of Euler's method, the “RK” method, and the area fungtignr{ethod. Draw
some well-thought-out conclusions.

Exercise 7The differential equationqg:—y =In(sin(x)) (subject to the condition that= 2
X

wheny = 3) has exact solution= +r dt.

(Check: Doesy(2) = 3? Doesg—y =In(sin(x)) ? [Feel free to let your ‘89 compute the
X

derivative.])

Exercise 8Find the antiderivative of =sin(x*> that passes through the point (4,2) and
graph it. Is the derivative of your solution equal to>é)¥

Exercise 9Find the derivative with respect xaf I:g(t)dt and IXZ g(t)dt (assume thay
is suitably continuous).

Exercise 10in general :—y = f (x) (subject to the conditions that b whenx = a and
X

thatf is properly continuous) has solutigr +r dt, whether or not(x)

has a “closed form” antiderivative.
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