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By Dave Slomer 
 

Some differential equations are downright easy to solve, such as 23x
dx

dy = , which has the 

general solution Cxy += 3 . Many others are not nearly so easy and some are impossible 
to solve symbolically. 
 

For example, suppose you have to solve the differential equation 
2xe

dx

dy −= with initial 

condition y(1) = 2. But you can’t find an antiderivative of 
2xe− . You try your TI-89, but 

it’s stuck, too (see fig. 1).  

Fig. 1  
 
You can use numeric or graphical methods, such as Euler’s method and slope fields, to 
get a feel for the nature of the solution. These are built into your TI-89 in “differential 
equation graphing mode”. Their visual clues about the solution of the given differential 
equation (defined in figure 2b) are shown in figure 2a. The dark function in figure 2a is 

the Euler’s method solution to
2xe

dx

dy −= if y(1) = 2. Call the solution y = E(x). Since the 

graph of E is traceable, you could find out as much as you might want to about the 
solution, making a table of values by tracing to as many points as you care to.  

Fig. 2a   Fig. 2b   

Fig. 2c   Fig. 2d  
 
 
Exercise 1: Fill in the second column of Table 1 (below) with trace values from the Euler 
solution (y = E(x)). [Get into differential equation graphing mode (press � a [) and set it up as 
shown above in figures 2b through 2d. To do so, press � (� b) and, make y1'=e^(-x^2)) and set t0=1 



and yi1=2 to establish the given initial condition y(1)=2. Then, press � ¬ and use the cursor to change the 
GRAPH FORMATS screen to match figure 2c. Finally, press � c and make the window match what is 
shown in figure 2d. Finally, press � d to see the graph and d to trace]  
 
Table 1: 

x E(x) (approx. value)   
-2    
-1    
0    
1    
2    

 
 
Exercise 2: Change the Solution Method from EULER  to RK  (refer to figure 2c). This 
method, short for “Runge-Kutta”, offers better accuracy but is slower because of the 
added complexity of the method. Label the third column of the table above “RK(x)” and 
fill it in by tracing. 
 
Yes, you DO have better things to do than fill in tables! Let the ’89 do the work. But how? 
 

While no “closed form” solution exists for antiderivatives of 
2xe− , the Fundamental 

Theorem of Calculus (which demonstrates that integration and differentiation are inverse 
operations) says that we can always find an antiderivative of any continuous function. So, 

∫ ∫ −− =
x

a

tx dtedxe
22

 for any choice of the constant a, since 
2xey −= is continuous for all x. 

 
At first, this looks and feels like the ol’ runaround. But, trusting your ’89 to compute 
derivatives correctly, just key in ¶(· (e^(-t^2),t,a,x),x) and read the result. The integral 

∫ −x

a

t dte
2

 is a function of x because x is the upper limit, so it makes sense to graph 

functions defined by equations such as ∫ −=
x

a

t dtexA
2

)( . Such functions are called area 

functions. So it makes sense to find the derivative of an area function with respect to x.  
 
 

Exercise 3: Explain why result of ¶(· (e^(-t^2),t,a,x),x) proves that ∫ −x

a

t dte
2

is an 

antiderivative of 
2xe− . 

 
 

Of course, there are infinitely many antiderivatives of 
2xe− , as the slope field suggests 

(fig. 2a). Would the general antiderivative here be ∫ −x

a

t dte
2

 because a is an unknown 

constant? Or should you add on the usual constant C? This is answered in Exercise 10.  
 



Meanwhile, for a specific value of the lower limit a, you might go to Function graphing 

�, store ∫ −x

a

t dte
2

 into y1, and have the ’89 draw the graph. You could then also look 

at a table of values. [You could even try to find (or write) a TI-89 program that computes approximate 
values of definite integrals and run it for a bunch of x’s.] 
 
But how do you choose a? (Forget about whether you need to add C for now. One thing at a time.) 
Determining a by trial-and-error is tempting (though not for long). 
 
Define y1=· (e^(-t^2),t,a,x) and experiment with a on the home screen (as in figure 3a). 
This is easy enough, and who knows what it might tell us? Store 0 into a and recall y1(x) 
to see that y1 looks right, as it does in figure 3a below.  

Fig. 3a   Fig. 3b  
 
But if you graph, even if you set xres=9 (meaning to plot points at every 9th pixel), you 
will wonder when that first point is going to show up. [If your ’89 has begun graphing, you can 
press � to stop it.  Or let it crank. It’ll stop sooner or later, one way or another!] Computing y1(-4) 
[for example] on the home screen takes a fairly long time (explaining why graphing takes 
so long) but at least you get to see a value (fig. 3b). 
 
So, try the ’89’s table feature, which only calculates 5 function values at a time. Plotting 
the 5 points will likely tell you whether y1 is defined correctly. Make the table start at –2 
and up by 1’s. [To do so press � e and make tblStart = -2 and ∆tbl = 1; then press � f to see the 
table.] The table looks like so: 

Fig. 4  
Figure 4 shows that y1 does not pass through the initial point (1,2), so a = 0 is wrong, 
having caused y1 to pass through (1,0.746824) [approximately], missing (1,2) by about 
1.253 units. Adding that nasty approximation to y1 is tempting (Could this be C?). But 
noting that (0,0) is on this area function and that those appear to be exact coordinates 
gives hope for an exact hit. It’s time to quit trial-and-error and analyze. 
 
 
Exercise 4: You need y1(1) = 2. Exactly 2. How might you choose a in light of this?  
 
Hint:  Fill in the blank in the definition of y1 below with a number that will make y1(1) 
exactly equal 0, making (1,0) an exact  point on the graph. 

y1=· (e^(-t^2),t,_____,x) 



Keep analyzing. Just make sure that y1(1) = 2 (not 0) and that the derivative of y1 with 

respect to x is 
2xe− . It won’t take too long to find this unique specific solution correctly. 

 

Exercise 5: Once you have found the right a, label column 4 of Table 1 “y1(x)” and fill it 
in. Compare it with the Euler’s method and “RK” method values. You can do this on the 
home screen, one x at a time, or use the ’89’s table feature, as was done in figure 4. 
 
 
Exercise 6: Analyze all four columns of Table 1. Make some guesses about the relative 
accuracy of Euler’s method, the “RK” method, and the area function (y1) method. Draw 
some well-thought-out conclusions. 
 
 

Exercise 7: The differential equation ))ln(sin(x
dx

dy =  (subject to the condition that x = 2 

when y = 3) has exact solution y = _____ + ∫
    

    
          dt . 

(Check: Does (y(2) = 3? Does ))ln(sin(x
dx

dy = ? [Feel free to let your ’89 compute the 

derivative.]) 
 
Exercise 8: Find the antiderivative of )sin( 2xy = that passes through the point (4,2) and 
graph it. Is the derivative of your solution equal to sin(x2)? 
 
 

Exercise 9: Find the derivative with respect to x of ∫
x

dttg
2

)(  and ∫
2

)(
x

dttg  (assume that g 

is suitably continuous). 
 
 

Exercise 10: In general, 
dy

dx
f x= ( )  (subject to the conditions that y = b when x = a and 

that f is properly continuous) has solution y = _____ + ∫
    

    
          dt , whether or not f(x) 

has a “closed form” antiderivative. 
 
 
Calculus Generic Scope and Sequence Topics: Differential Equations, Antiderivatives 
NCTM Standards: Number and operations, Algebra, Geometry, Measurement, Problem 
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