Highest Common Factor

Student Activity

$\begin{array}{llll}7 & 8 & 9 & 10\end{array}$

Introduction

 for many reasons. A common application relates to fractions, for example:

$$
\frac{1}{12}+\frac{1}{18}=\frac{18}{216}+\frac{12}{216}=\frac{30}{216} \quad \text { OR } \quad \frac{1}{12}+\frac{1}{18}=\frac{3}{36}+\frac{2}{36}=\frac{5}{36}
$$

The left-hand example prioritises a common denominator over highest common factor, the result is a fraction that still needs to be simplified. The right-hand example prioritises a highest common factor and then establishes the common denominator; the result is a fraction in its simplest form. This is just one example where a highest common factor is useful.
More than 2000 years ago, a mathematician by the name of Euclid created an algorithm that helps find the highest common factor of two numbers.

LINE \#1: IF A $=0$ THEN GCD $(A, B)=B$ since $\operatorname{GCD}(0, B)=B$
LINE \#2: IF B = 0 THEN GCD $(A, B)=A$ since $\operatorname{GCD}(A, 0)=A$
LINE \#3: $\quad A=B \times Q+R \ldots$ where Q is the quotient and R is the remainder
LINE \#4: $\quad \operatorname{GCD}(B, R)=\operatorname{GCD}(A, B)$, now find $\operatorname{GCD}(B, R)$
This algorithm will make more sense when some numbers are used for A and B.

https://bit.ly/EuclidAlgorithm Suppose we want to find the highest common factor of (A) 1260 and (B) 385 .
As neither $\mathrm{A}=0$ or $\mathrm{B}=0$ we progress to LINE \#3.
$1260=385 \times 3+105$ [We can say that 105 is the remainder when 1260 is divided by 385]
According to LINE \#4 of Euclid's algorithm: $\operatorname{GCD}(1260,385)=\operatorname{GCD}(385,105)$
We apply the algorithm again as $385 \neq 0$ and $105 \neq 0$ and proceed to LINE \#3.
$385=105 \times 3+70 \quad$ [We can say that 70 is the remainder when 385 is divided by 105]
According to LINE \#4 of Euclid's algorithm: $\operatorname{GCD}(1260,385)=\operatorname{GCD}(385,105)=\operatorname{GCD}(105,70)$. As $105 \neq 0$ and $70 \neq 0$, then we return to LINE \#3
$105=70 \times 1+35 \quad$ [We can say that 35 is the remainder when 105 is divided by 70]
We are getting close! According to LINE \#4 of Euclid's algorithm: $\operatorname{GCD}(1260,385)=\ldots=\operatorname{GCD}(70,35)$
Applying the algorithm one more time, as $70 \neq 0$ and $35 \neq 0$, we proceed to LINE \#3.

$$
70=2 \times 35+0 . \quad \text { [This time the remainder is } 0!\text {] }
$$

Now we can apply LINE \#1 or LINE \#2 since we have $\operatorname{GCD}(35,0)=35$.
Our conclusion is that the Highest Common Factor or Greatest Common Divisor of 1286 and 385 is 35 .
Question: 1.
Use Euclid's algorithm to identify the highest common factor of: 3850 and 3234.

[^0]
Creating the Program

Instructions:

Start a new document; insert a new program.

Add Program Editor > New

Call the program: EGCD
Edit the program definition to include "a" and "b". (See opposite)

Euclid's algorithm ceases when either $\mathrm{a}=0$ or $\mathrm{b}=0$, an easy way to check this is: $\mathrm{axb}=0$. The null factor law states that "if the product of two numbers is zero, then one or both of the numbers must be zero." The algorithm should continue to run while $\mathrm{a} \mathrm{b} \neq 0$.
Menu > Control > While ... EndWhile

The "not equals" sign can be accessed from the inequality flyout menu.

Modular arithmetic returns the remainder when $a \div b($ where $a>b)$ so an If ... Then ... Else ... statement can be used to process Line \#3 of Euclid's algorithm.

Menu > Control > If...Then...Else... Endlf

The mod() command can be typed directly or accessed from the catalogue. Note carefully the respective orders for a and b.

That's the entire algorithm! The only thing remaining is to display the results. You can place: Disp a,b in the loop, between Endlf and EndWhile or outside the loop, between EndWhile and EndPrgrm.

Question: 2.

What is the difference in the output when the display command (Disp) is placed inside the loop compared with outside? Try it using 1914 and 7293.

Question: 3.

Test your program on some smaller numbers where you know the highest common factor. Record your test results here.

Question: 4.

The Number menu in the Calculator Application contains a command to determine the highest common factor of two numbers. Adjust your program to find the highest common factor of three numbers or a list of numbers. Example: EGCD(a,b,c) or EGCD(\{\#1,\#2 ... \#n\})

Test and evaluate your program.

[^1]
[^0]: © Texas Instruments 2021. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

[^1]: C) Texas Instruments 2021. You may copy, communicate and modify this material for non-commercial educational purposes

