Fibonacci Fun

Problem 1a: The Fibonacci Sequence

Refer to pages 1.1 through 1.4 in the .tns file.
The first two numbers of the Fibonacci sequence are 1 and 1. Each subsequent number is the sum of the two previous numbers.
$1,1,2,3,5,8,13, \ldots$
Find the first 20 numbers in the Fibonacci sequence.

Problem 1b: Divisibility and the Fibonacci Sequence
Refer to pages 1.5 through 1.7 in the .tns file.

1. Which terms of the Fibonacci sequence are divisible by 5 ?
2. Can you make a generalization about divisibility by 5 ?
3. Which terms of the Fibonacci sequence are divisible by 3 ?
4. Can you make a generalization about divisibility by 3 ?
5. Which Fibonacci numbers are even?
6. Make some other conjectures about divisibility and the Fibonacci sequence.

Problem2: Looking Good with Fibonacci
Refer to page 2.1 in the .tns file.

1	1	2	3	5	8	13	21	34	55
89	144	233	377	610	987	1597	2584	4181	6765

Find the ratios of consecutive Fibonacci terms, larger divided by smaller.

$2 / 1=$	$21 / 13=$
$3 / 2=$	$34 / 21=$
$5 / 3=$	$55 / 34=$
$8 / 5=$	$89 / 55=$
$13 / 8=$	$144 / 89=$

What do you notice about the quotients?

Predict what will happen with the next ten quotients.

233/144 =

377/233 =
610/377 =
987/610 =

1597/987 =
2584/1597 = 4181/2584 = 6765/4181 =

Problem 3: Four, Five, Six with Fibonacci

Refer to page 3.1 in the .tns file.

1	1	2	3	5	8	13	21	34	55
89	144	233	377	610	987	1597	2584	4181	6765

Six: Find the sum of any six consecutive terms of the Fibonacci sequence.

Four: Divide the sum by 4 .

Five: What do you notice?

Now repeat with six other consecutive terms.
Six: Find the sum of any six consecutive terms of the Fibonacci sequence.

Four: Divide the sum by 4.

Five: What do you notice?

Refer to page 3.2 in the .tns file.
Prove that the sum of any six consecutive terms of the Fibonacci sequence divided by 4 will always equal the $5^{\text {th }}$ of the six consecutive terms.

