Angles in Quadrilaterals

ACMMG202

789

TI-Nspire

Navigator

Student

Objective

Establish properties of quadrilaterals using congruent triangles and angle properties, and solve related numerical problems using reasoning.

Equipment

For this activity you will need:

- TI-Nspire
- TI-Nspire file: "Angles in Quadrilaterals" (tns)
- TI-Navigator system (Optional)

Problem 1 - Properties of Rhombi

You will begin this activity by looking at angle properties of rhombi. On page 1.3, you are given rhombus $R E A D$ and the measure of angles R, E, A, and D.

Question: 1.
Move point E to four different positions and collect the measures of R, E, A, and D and record your measurements in the table below.

Position	\boldsymbol{R}	\boldsymbol{E}	\boldsymbol{A}	\boldsymbol{D}
$\mathbf{1}$				
2				
3				
4				

Question: 2.
Consecutive angles of a rhombus are \qquad .

Question: 3.
Opposite angles of a rhombus are \qquad .

Next, you will look at the properties of the angles created by the diagonals of a rhombi. On page 1.7, you are given rhombus CARD and the measure of angles CSA, ASR, RSD, and DSC.

Question: 4.

Move point C to four different positions. Angles formed by the intersection of the two diagonals of a rhombus are \qquad .

On page 1.10, you are given rhombus $R H O M$ and the measure of all angles created by the diagonals of the rhombus.

Question: 5.

The diagonals of a rhombus bisect the vertices.

Problem 2 - Properties of Kites

You will begin this problem by looking at angle properties of kites. You are given kite KING and the measure of angles K, I, N, and G.

Question: 6.

Move point $/$ to two different positions and point K to two different positions and collect the measures of K, I, N, and G and record your measurements in the table below.

Position	\boldsymbol{K}	\boldsymbol{I}	\boldsymbol{N}	\boldsymbol{G}
$\mathbf{1}$				
$\mathbf{2}$				
$\mathbf{3}$				
4				

Question: 7.

What do you notice about the opposite angles of a kite?

Next, you will look at the properties of the angles created by the diagonals of a kite. On page 2.5, you are given kite BLUE and the measure of angles BSL, LSU, USE, and ESB.

Question: 8.

Move point L to four different positions. Angles formed by the intersection of the two diagonals of a kite are \qquad .

On page 2.8, you are given rhombi KITE and the measure of all angles created by the diagonals of the rhombus.

Question: 9.
Move point K to four different positions. What do you notice about the angles created by the diagonals of a kite?

Problem 3 - Properties of Trapezoids

In this problem, you will look at angle properties of trapezoids. You are given trapezoid TRAP and the measure of angles T, R, A, and P.

Question: 10.
Move point R to four different positions and collect the measures of T, R, A, and P onto the table below.

Position	\boldsymbol{T}	\boldsymbol{R}	\boldsymbol{A}	\boldsymbol{P}
$\mathbf{1}$				
$\mathbf{2}$				
$\mathbf{3}$				
4				

Question: 11.
What do you notice about the angles of a trapezoid?

Problem 4 - Beyond Observation (Extension)

Parallelogram:
"A quadrilateral with pairs of opposite sides parallel".
Parallelograms have many properties that are a consequence of this definition. In problem 4 a parallelogram has been constructed. On page 4.1 the angle properties are explored through a series of steps. Follow these steps then answer the questions below.

Question: 12.

Name and describe the relationship between each angle pair.
a)

d)

b)

e)

c)

The interactive diagram on page 4.2 provides guided steps, to help prove that opposite sides of a parallelogram are equal in length.

Question: 13.
Use the interactive diagram to help formulate a proof to show that the opposite sides of a parallelogram are equal.

