Il-nspire

Medians in a Triangle
ID: 9690

Name \qquad
Class \qquad

MEDIANS IN A TRIANGLE

Geometry
Exploring medians and their properties

Problem 1 - Medians and concurrency

A median of a triangle connects a vertex of the triangle with the midpoint of the opposite side.

On page 1.4, construct all three medians using the Midpoint and Segment tools. Drag the vertices and observe what happens to the medians.

- What do you notice about the third median with respect to the other two?

Problem 2 - Parts of a median

The point of concurrency of the three medians of a triangle is called the centroid. In the triangle on page 2.2 , point G is the centroid. The lengths of the "parts" of each median are displayed.

Use the Calculate tool to evaluate the ratios. Then drag the vertices.

- How does the centroid of a triangle divide each median?

The spreadsheet on page 2.5 captured the lengths $A G$ and $G D$ as you dragged the vertices on page 2.2. Select Columns A and B and make a Quick Graph of the data. Then fit a movable line to the data points.

- What is the slope of the fit line? What is the significance of this slope?

II-nspire

Problem 3 - Coordinates of the centroid

On page 3.2, a triangle and its centroid is shown on a coordinate grid.

Look at the x-coordinates of the vertices and try to find how they are related to the x-coordinate of the centroid. Do the same for the y-coordinates of the vertices and the y-coordinate of the centroid.

Then drag vertices to test your conjecture.

- What is the relationship between the coordinates of the vertices of a triangle and the coordinates of the centroid?

Problem 4 - Area relationships

The centroid of a triangle is also its center of gravity (or mass), provided the triangle has a uniform thickness and density.

- On page 4.2 , verify this by drawing $\triangle A G C$, $\triangle A G B$, and $\triangle B G C$, and measuring their areas. Then change the size of the triangle. What do you notice?

Take this exploration one step further:

- On page 4.4, draw and measure the areas of each of the 6 small triangles formed by the 3 medians. Then drag the vertices. What do you observe?

