

About the Lesson

In this activity, students will graph piecewise functions and evaluate numerically and graphically the left hand limit and the right hand limit of the function as *x* approaches a given number, *c*. As a result, students will:

- Determine if a limit exists.
- Modify piecewise functions so that their limits do exist.

Vocabulary

- · one-sided limits
- continuity

Teacher Preparation and Notes

- Students should already have been introduced to one-sided limits.
- Students should know that a limit exists if and only if the left hand limit and the right hand limit are equal.

Activity Materials

• Compatible TI Technologies:

TI-84 Plus* TI-84 Plus Silver Edition*

TI-84 Plus C Silver Edition

TI-84 Plus CE

* with the latest operating system (2.55MP) featuring MathPrint[™] functionality.

Tech Tips:

- This activity includes screen captures taken from the TI-84 Plus CE. It is also appropriate for use with the rest of the TI-84 Plus family. Slight variations to these directions may be required if using other calculator models.
- Watch for additional Tech Tips throughout the activity for the specific technology you are using.
- Access free tutorials at http://education.ti.com/calculato rs/pd/US/Online-Learning/Tutorials
- Any required calculator files can be distributed to students via handheld-to-handheld transfer.

Lesson Files:

- Making_Limits_Exits_Student.pdf
- Making_Limits_Exist_Student.do

С

Problem 1 – Linear Piecewise Function

Before changing the value of *a*, students will graphically estimate the limit of f(x) as *x* approaches 1 from the left and the right. Students will also use the table to numerically estimate the value of *a* that will ensure that the limit of f(x) as *x* approaches one exists.

NORMAL	FLOAT	AUTO	REAL	RADIAN	MP	
			Ŧ			
			-			
			I			

Tech Tip: To set the domain for piecewise functions, each piece must be entered into its own equation line and be divided by its restricted domain.

1. Graphically, what do the following one-sided limits appear to be?

$f(\mathbf{x}) = \int$	∫5, <i>x</i> ≥1 1, <i>x</i> <1
/(x)-	1, <i>x</i> < 1

a.	$\lim_{x\to \uparrow} f(x) \approx \underline{\qquad}$
	Answer: 5
b.	$\lim_{x\to 1^+} f(x) \approx \underline{\qquad}$
	Answer: 1

2. After checking graphically, and numerically, what value of a resulted in f(x) being continuous?

Answer: a = 1

Problem 2 – Linear and Quadratic Piecewise Function

Problem 1 is repeated for a different function. Before changing the value of *a*, students will graphically estimate the limit of g(x) as *x* approaches 1 from the left and the right.

TEACHER NOTES

Making Limits Exist

Students will use the table to numerically estimate the value of *a* that will ensure that the limit of g(x) as *x* approaches one exists.

Here the algebraic calculations for the left and right hand limits are to be shown.

RESS +	FOR AT61	Y ₂		
	11			_
.5	ERROR	2.5		_
.6	ERROR	2.6		
.7	ERROR	2.7		
.8	ERROR	2.8		
.9	ERROR	2.9		
1	3	ERROR		
1.1	3.63	ERROR		
1.2	4.32	ERROR		
1.3	5.07	ERROR		
1.4	5.88	ERROR		
1.5	6.75	ERROR		
X=.5				

3. Graphically and numerically, what do the following one-sided limits appear to be?

$g(x) = \begin{cases} 5 \cdot x^2, x \ge 1\\ x + 2, x < 1 \end{cases}$	a.	$\lim_{x\to 1^-} g(x) \approx \underline{\qquad}$
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Answer: 3
	b.	$\lim_{x\to 1^+} g(x) \approx \underline{\qquad}$

4. a. After checking graphically and numerically, what value of *a* resulted in g(x) being continuous?

Answer: *a* = 3

b. Show calculations of the left hand limit and the right hand limit to verify that your value for *a* makes the limit exist.

Answer: 5

$$\underbrace{\lim_{x \to \uparrow^-} g(x) = \lim_{x \to \uparrow^+} g(x)}_{1+2 = a \cdot 1^2}$$

$$3 = a$$

Problem 3 – Trigonometric Piecewise Function

Problems 1 and 2 are repeated for a different function. Before changing the value of *a*, students will graphically estimate the limit of h(x) as *x* approaches 2 from the left and the right.

Students will use the table to numerically estimate the value of *a* that will ensure that the limit of h(x) as *x* approaches two exists. Students should view the table near x = 2 instead of 1.

Х	Y1	Y2		Т
1.6	ERROR	1.618		
1.7	ERROR	1.782		
1.8	ERROR	1.9021		
1.9	ERROR	1.9754		
2	2	ERROR		
2.1	1.8436	ERROR		
2.2	1.691	ERROR		
2.3	1.546	ERROR		
2.4	1.4122	ERROR		
2.5	1.2929	ERROR		
2.6	1.191	ERROR		

5. Graphically and numerically, what do the following one-sided limits appear to be?

 $h(x) = \begin{cases} 5+3\sin\left(\left(x-4\right)\frac{\pi}{2}\right), x \ge 2 & \text{a. } \lim_{x \to 2^-} h(x) \approx \underline{\qquad} \\ 2\sin\left(\left(x-1\right)\frac{\pi}{2}\right), x < 2 & \text{Answer: } 2 \end{cases}$ b. $\lim_{x \to 2^+} h(x) \approx \underline{\qquad} \\ \text{Answer: } 5 & \text{Answer: } 5 \end{cases}$

6. a. After checking graphically and numerically, what value of *a* resulted in h(x) being continuous?

Answer: a = 2

b. Show calculations of the left-hand limit and the right-hand limit to verify that your value for *a* makes the limit exist.

$$\lim_{x \to 2^{-}} h(x) = \lim_{x \to 2^{+}} h(x)$$

$$2\sin\left(\frac{\pi}{2}(2-1)\right) = a + 3\sin\left(\frac{\pi}{2}(2-4)\right)$$
Answer:

$$2\sin\left(\frac{\pi}{2}\right) = a + 3\sin(-\pi)$$

$$2 \cdot 1 = a + 3 \cdot 0$$

$$2 = a$$