About the Lesson

In this activity, students will graph piecewise functions and evaluate numerically and graphically the left hand limit and the right hand limit of the function as x approaches a given number, c. As a result, students will:

- Determine if a limit exists.
- Modify piecewise functions so that their limits do exist.

Vocabulary

- one-sided limits
- continuity

Teacher Preparation and Notes

- Students should already have been introduced to one-sided limits.
- Students should know that a limit exists if and only if the left hand limit and the right hand limit are equal.

Activity Materials

- Compatible TI Technologies:

[^0]

Tech Tips:

- This activity includes screen captures taken from the TI-84 Plus CE. It is also appropriate for use with the rest of the TI-84 Plus family. Slight variations to these directions may be required if using other calculator models.
- Watch for additional Tech Tips throughout the activity for the specific technology you are using.
- Access free tutorials at http://education.ti.com/calculato rs/pd/US/OnlineLearning/Tutorials
- Any required calculator files can be distributed to students via handheld-to-handheld transfer.

Lesson Files:

- Making_Limits_Exits_Student.pdf
- Making_Limits_Exist_Student.do C

Problem 1 - Linear Piecewise Function

Before changing the value of a, students will graphically estimate the limit of $f(x)$ as x approaches 1 from the left and the right. Students will also use the table to numerically estimate the value of a that will ensure that the limit of $f(x)$ as x approaches one exists.

Tech Tip: To set the domain for piecewise functions, each piece must be entered into its own equation line and be divided by its restricted domain.

1. Graphically, what do the following one-sided limits appear to be?
$f(x)=\left\{\begin{array}{l}5, x \geq 1 \\ 1, x<1\end{array}\right.$
a. $\lim _{x \rightarrow 1^{-}} f(x) \approx$ \qquad
Answer: 5
b. $\lim _{x \rightarrow 1^{+}} f(x) \approx$ \qquad
Answer: 1
2. After checking graphically, and numerically, what value of a resulted in $f(x)$ being continuous?

Answer: $a=1$

Problem 2 - Linear and Quadratic Piecewise Function

Problem 1 is repeated for a different function. Before changing the value of a, students will graphically estimate the limit of $g(x)$ as x approaches 1 from the left and the right.

Students will use the table to numerically estimate the value of a that will ensure that the limit of $g(x)$ as x approaches one exists.

Here the algebraic calculations for the left and right hand limits are to be shown.

MORMAL FLOAT RUTO REAL RADIfiN MP PRESS + FOR \triangle Tbl				\square
X	Y_{1}	Y_{2}		
5	ERROR	2.5		
. 6	ERROR	2.6		
.?	ERROR	2.7		
. 8	ERROR	2.8		
. 9	ERROR	2.9		
1	3	ERROR		
1.1	3.63	ERROR		
1.2	4.32	ERROR		
1.3	5.97	ERROR		
1.4	5.88	ERROR		
1.5	6.75	ERROR		
$x=.5$				

3. Graphically and numerically, what do the following one-sided limits appear to be?
$g(x)=\left\{\begin{array}{l}5 \cdot x^{2}, x \geq 1 \\ x+2, x<1\end{array}\right.$
a. $\lim _{x \rightarrow 1} g(x) \approx$ \qquad

Answer: 3
b. $\lim _{x \rightarrow+^{+}} g(x) \approx$ \qquad
Answer: 5
4. a. After checking graphically and numerically, what value of a resulted in $g(x)$ being continuous?

Answer: $a=3$
b. Show calculations of the left hand limit and the right hand limit to verify that your value for a makes the limit exist.

$$
\begin{aligned}
\lim _{x \rightarrow 1^{+}} g(x) & =\lim _{x \rightarrow+} g(x) \\
\text { Answer: } \quad 1+2 & =a \cdot 1^{2} \\
3 & =a
\end{aligned}
$$

Problem 3 - Trigonometric Piecewise Function

Problems 1 and 2 are repeated for a different function.
Before changing the value of a, students will graphically estimate the limit of $h(x)$ as x approaches 2 from the left and the right.

Students will use the table to numerically estimate the value of a that will ensure that the limit of $h(x)$ as x approaches two exists. Students should view the table near $x=2$ instead of 1 .

MORMAL FLOAT GUTO REAL PRESS + FOR Δ Tbl			Rflditi MP	\square
X	Y1	Y_{2}		
1.6	ERROR	1.618		
1.7	ERROR	1.782		
1.8	ERROR	1.9021		
1.9	ERROR	1.9754		
	22	ERROR		
2.1 2.2	1.8436	ERROR		
2.3	1.546	ERROR		
2.4	1.4122	ERROR		
2.5	1.2929	ERROR		
2.6	1.191	ERROR		
$X=2$				

5. Graphically and numerically, what do the following one-sided limits appear to be?
$h(x)= \begin{cases}5+3 \sin \left((x-4) \frac{\pi}{2}\right), & x \geq 2 \\ 2 \sin \left((x-1) \frac{\pi}{2}\right), & x<2\end{cases}$
a. $\lim _{x \rightarrow 2^{-}} h(x) \approx$ \qquad

Answer: 2
b. $\lim _{x \rightarrow 2^{+}} h(x) \approx$ \qquad
Answer: 5
6. a. After checking graphically and numerically, what value of a resulted in $h(\mathrm{x})$ being continuous?

Answer: $a=2$
b. Show calculations of the left-hand limit and the right-hand limit to verify that your value for a makes the limit exist.

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} h(x) & =\lim _{x \rightarrow 2^{+}} h(x) \\
2 \sin \left(\frac{\pi}{2}(2-1)\right) & =a+3 \sin \left(\frac{\pi}{2}(2-4)\right)
\end{aligned}
$$

Answer:

$$
\begin{aligned}
2 \sin \left(\frac{\pi}{2}\right) & =a+3 \sin (-\pi) \\
2 \cdot 1 & =a+3 \cdot 0 \\
2 & =a
\end{aligned}
$$

[^0]: TI-84 Plus*
 TI-84 Plus Silver Edition*
 -TI-84 Plus C Silver Edition
 -TI-84 Plus CE

 * with the latest operating system (2.55MP) featuring MathPrint ${ }^{\text {TM }}$ functionality.

