Rational Quadratic Zeros

In this lesson, you will extend the code from Integer Quadratic Zeros. If you didn't complete the activity, complete that activity first or obtain the base code from your teacher.

In this lesson, you will create a game that lets you practice finding x-intercepts for equations in the form $y=a x^{2}+b x+c$. These solutions will have one rational and one integer solution.

In the challenge, you will apply what you have learned to create a third game. This game will let you practice finding x-intercepts for equations in the form $y=a x^{2}+b x+c$ where both x-intercepts could be rational numbers.

Objectives:

Programming Objectives:

- Use the input function and a variable to collect and store data from a user
- Use the randint() function to generate random integers.
- Use a while loop to repeat code
- Use if..elif..else statements to make decisions.

Math Objectives:

- Explore how x-intercepts are related to factored quadratic equations
- Explore how to factor equation in standard form
- Factor quadratic equations with rational solutions

Math Course Connections: Algebra 1 or Algebra 2

In this lesson, you will create a game that lets you practice finding x-intercepts for equations in the form $y=a x^{2}+b x+c$. These solutions will have one rational and one integer solution.

Example 1:

Example 2:

1. Open up the python File Manager.
[prgm] Python App

Scroll through your list of projects until the arrow is to the left of QUADZERO.

Select [Manage]

Choose: 1 Replicate Program

Name the new program QUADZER2.

- Quadzero
Run |Edit| New \mid Shell|Manage

	- 1
Python Rpp:v5.5.2.0344	
$\begin{aligned} & \text { 1:Repilicate Prograx. } \\ & \text { 2: Delete Prograx. } \\ & \text { 3: Renane Progran. } \\ & \text { 4: Pbout. } \\ & \text { 5: Quit Python } \end{aligned}$	[del]
Ese	

(5) FIC MEMMEE	\square
Current Nawe: QUPDZERO Name=QUADZER2]	
Allowed - Up to 8 characters - First oharaoter:A-Z - Rewaining characters:A-Z	
Ese	Ok

2. The factored equations in this problem will be of the type:

$$
y=\left(m^{*} x-x 1\right)(x-x 2)
$$

In the first project, the line

$$
\text { x2 }=\text { randint }(-10,10)
$$

creates and stores random integer value from -10 to 10 in the variable $\times 2$

Similarily, we will let m be an integer value from two to seven.

Add a line of code after the $\mathrm{x} 2=$ randint $(-10,10)$ to generate and store the value of m.
3. How does the addition of the cofficient m change the values of b and c in the code?

Use distribution to solve and rewrite the equation in standard form.
$y=\left(m^{*} x-x 1\right)(x-x 2)$
b = \qquad
$\mathrm{c}=$ \qquad

Modify the values for b and c in the code if necessary.
4. Does your code match the code to the right?

	[]
Random Simulation	
$\begin{aligned} & \text { for i in range }(5): \\ & \because \times 1=\text { randint } \\ & \because \times 2=r a n d i n t(-10,10) \\ & \because \text { m=randint }(2,7), 10) \end{aligned}$	
$\begin{aligned} & \because b=(-\times 1)+(-\times 2 w m) \\ & \cdots=\times 1 * 2 \end{aligned}$	
Fns...\|a ${ }^{\text {¢ \# \# T }}$	

5. When distributing m in step 3 , your final equation started with $m x^{\wedge} 2$ instead of $x^{\wedge} 2$.

How can you modify the print statements to show $m x^{\wedge} 2$ instead of $x^{\wedge} 2$?
Be careful. You want the value of m to display not the letter m.

Original

Modified
6. How does the user input change?

Let's look at a sample problem:

$$
\begin{aligned}
& 4 x^{2}+25 x-21=0 \\
& (4 x-3)(x+7)=0 \\
& 4 x-3=0 \quad x+7=0 \\
& x=3 / 4
\end{aligned} \quad x=-7 .
$$

Not all of the answers will be fractions, but some will be fractions.
 The original code:
z1 = int(input("x1 = "))
will not allow the user to enter the division sign.

To preform a calculation then store as a float, use the eval() function.
Modify the two input lines to:

$$
\begin{aligned}
& \text { z1 = float(eval(input("x1 = ")) } \\
& \text { z2 = float(eval(input("x2 = ")) }
\end{aligned}
$$

Fns > Type > Float
Fns $>$ I/O $>$ eval()
7. You have one more modification to make. The original project had the line:

$$
\text { if }(x 1==z 1 \text { and } x 2==z 2) \text { or }(x 1==z 2 \text { and } z 1==x 2) \text { : }
$$

Modify the if statement so it includes the new coefficient m .

Execute your program. Verify your if statement works.
8. Did you change the code to:
if $(x 1 / m==z 1$ and $x 2==z 2)$ or $(x 1 / m==z 2$ and $x 2==z 1)$:

```
C) EDITOR: QUADZER2 PROGRMMLINE 0024,
    MPROGRAMLINS 0024
* z1=float(eval(input("×1 = ")))
*z2=float(eval(input("x2 = ")))
-. if ( }x1/m==z1\mathrm{ and }x2==z2) or ( x
    1/m==z2 and }\times2==z1)
....print("correct!")
*else:
|Fns... (a A #|Tools)
```

9. Lastly, modify your print statement if the user input is incorrect.

Challenge:

Create a QUADZER3 program that generates equations with two fractional x-intercepts.
For example, $6 x^{2}-11 x-35=0$ factors to $(3 x+5)(2 x-7)=0$.
The x-intercepts would be $x=-5 / 3$ and $x=7 / 2$.

