Math Explorations with Python

TI-84 PLUS CE PYTHON TECHNOLOGY

Rational Quadratic Zeros

In this lesson, you will extend the code from **Integer Quadratic Zeros**. If you didn't complete the activity, complete that activity first <u>or</u> obtain the base code from your teacher.

In this lesson, you will create a game that lets you practice finding x-intercepts for equations in the form $y = ax^2 + bx + c$. These solutions will have one rational and one integer solution.

In the challenge, you will apply what you have learned to create a third game. This game will let you practice finding x-intercepts for equations in the form

 $y = ax^2 + bx + c$ where both x-intercepts could be rational numbers.

Objectives:

Programming Objectives:

- Use the input function and a variable to collect and store data from a user
- Use the randint() function to generate random integers.
- Use a while loop to repeat code
- Use if..elif..else statements to make decisions.

Math Objectives:

- Explore how x-intercepts are related to factored quadratic equations
- Explore how to factor equation in standard form
- Factor quadratic equations with rational solutions

Math Course Connections: Algebra 1 or Algebra 2

In this lesson, you will create a game that lets you practice finding x-intercepts for equations in the form $y = ax^2 + bx + c$. These solutions will have one rational and one integer solution.

Example 1:

>>> # \$ >>> # F >>> fro find th y= 7 x	Shell R Cunning m QUAE ne x-ir `2+ 36	Reiniti QUADZ DZER2 i ntercep x+ 32	alized ER2 mport # ts	¥
×1 =				
Fns	a A #	Tools	Editor	Files

>>> # Shell Reinitialized >>> # Running QUADZER2 >>> from QUADZER2 import # find the x-intercepts y= 7 x²+ 36 x+ 32 x1 = -8/7 x2 = -4 correct!

Example 2:

e	Ū
<pre>>>> # Shell Reinitialized >>> # Running QUADZER2 >>> from QUADZER2 import * find the x-intercepts y= 5 x^2 -17 x+ 6 x1 = </pre>	

<pre>>> # Shell Reinitialized >>> # Running QUADZER2 >>> from QUADZER2 import # find the x-intercepts y= 5 x² -17 x+ 6 x1 = 2 x2 = 3 sorry should be 2 / 5 and 3</pre>

Fns… | a A # | Tools Editor Files |

Math Explorations with Python TI-84 PLUS CE PYTHON TECHNOLOGY	RATIONAL QUADRATIC ZEROS STUDENT DOCUMENT
 Open up the python File Manager. [prgm] Python App 	🔶 FILE MANAGER 🕴 🚺
Scroll through your list of projects until the arrow is to the left of QUADZERO.	
Select [Manage]	▶QUADZERO Run Edit New Shell Manage
Choose: 1 Replicate Program	Python Rpp:v5.5.2.0044
Name the new program QUADZER2.	2:Delete Program

FILE MANAGER REPLICATE PROBRAM Current Name:QURDZERO Name=QURDZER2	.0
Allowed - Up to 8 characters - First character:A-Z - Remaining characters:A-Z	0-9 _
Esc	0k

Esc

2. The factored equations in this problem will be of the type: $y = (m^*x - x1)(x - x2)$

In the first project, the line x2 = randint(-10, 10)

creates and stores random integer value from -10 to 10 in the variable x2

Similarly, we will let m be an integer value from two to seven.

Add a line of code after the $x^2 = randint(-10, 10)$ to generate and store the value of m.

3. How does the addition of the cofficient m change the values of b and c in the code?

Use distribution to solve and rewrite the equation in standard form.

 $y = (m^*x - x1)(x - x2)$

Math Explorations with Python

TI-84 PLUS CE PYTHON TECHNOLOGY

b = _____ c = _____

Modify the values for b and c in the code if necessary.

4. Does your code match the code to the right?

RATIONAL QUADRATIC ZEROS

STUDENT DOCUMENT

 When distributing m in step 3, your final equation started with mx² instead of x². How can you modify the print statements to show mx² instead of x²? Be careful. You want the value of m to display not the letter m.

EDITOR: QUADZER2 PROGRAM LINE 0018 **** print("y=",m,"x^2+",b,"x",c) **elif c>=0: **** print("y=",m,"x^2",b,"x+",c) **else: **** print("y=",m,"x^2",b,"x",c) **z1=float(eval(input("x1 = "))) **z2=float(eval(input("x2 = "))) Fns... a A # Tools Run Files

6. How does the user input change?

Let's look at a sample problem:

$$4x^{2} + 25x - 21 = 0$$

(4x - 3)(x + 7) = 0
4x - 3 = 0 x + 7 = 0
x = 3/4 x = -7

Not all of the answers will be fractions, but some will be fractions. The original code:

z1 = int(input("x1 = "))

will not allow the user to enter the division sign.

Math Explorations with Python

TI-84 PLUS CE PYTHON TECHNOLOGY

To preform a calculation then store as a float, use the eval() function.

Modify the two input lines to: z1 = float(eval(input("x1 = ")) z2 = float(eval(input("x2 = "))

Fns > Type > Float Fns > I/O > eval()

7. You have one more modification to make. The original project had the line:

if (x1 == z1 and x2 == z2) or (x1 == z2 and z1 == x2):

Modify the if statement so it includes the new coefficient m.

Execute your program. Verify your if statement works.

8. Did you change the code to:

if (x1/m==z1 and x2==z2) or (x1/m==z2 and x2==z1):

9. Lastly, modify your print statement if the user input is incorrect.

Original:

print("Sorry sould be",x1,"and",x2)

Change To:

print("Sorry sould be",x1,"/",m,"and",x2)

Challenge:

Create a QUADZER3 program that generates equations with two fractional x-intercepts.

For example, $6x^2 - 11x - 35 = 0$ factors to (3x + 5)(2x - 7) = 0.

The x-intercepts would be x = -5/3 and x = 7/2.

PROGRAM LINE 0024	- 🛛
••••print("y=",m,"x^2",b,"x"	,c)
<pre>**z1=float(eval(input("x1 =</pre>	")))
<pre>**z2=float(eval(input("x2 =</pre>	")))
<pre> • if (x1/m==z1 and x2==z2) c 1/m==z2 and x2==z1): • • • print("correct!") • • else: </pre>	or (x
Fns… a A # Tools Run F	iles

