Open the TI-Nspire document Radio_Station_KTNS.tns.

In this activity, you will explore a real-world example of the Law of Sines and the Law of Cosines.

Radio Station KTNS is located at point P in the figure. The range of its signal is r miles, meaning that people within r miles of P would be able to hear the station. You are driving along road $O M$ at an angle of 30° with $O P$. For how many miles, d, could you hear station KTNS?

In $\triangle P A B$, the Law of Cosines tells us that $d^{2}=2 r^{2}-2 r^{2} \cdot \cos (\angle A P B)$, so it is reasonable to assume that d^{2} could be a linear function of r^{2}. To solve this problem, you will determine d^{2} in terms of r^{2} in two ways:

- Find an experimental model by gathering data and fitting an appropriate regression function to the data.
- Find a theoretical model using the Law of Sines, the Law of Cosines, and algebra.

Move to page 1.2.

Press atril and atril to navigate through the lesson.
The figure is a scale drawing with 1 unit $=10$ miles so that $O P=12$ units or 120 miles.

1. In miles, the reasonable values of r satisfy $k<r \leq 120$. What is the value of k ? Why?

Move to page 1.3.

Using the slider, the following data has been gathered in the spreadsheet in the four columns: $\operatorname{rad}(r) \quad \operatorname{dis}(d) \quad r 2=r^{2} \quad d 2=d^{2}$

Move to page 1.4

A scatterplot of the data has been drawn on this page.
\qquad

Move to page 1.5.

2. Fit a linear regression function to the data with $x=r 2$ and $y=d 2$ in units. Select MENU >

Statistics > Stat Calculations > Linear Regression (mx+b). with $r 2$ for X List, $d 2$ for Y List, and Save RegEqn to: $f 1$.

Record your answer here: $d^{2}=$ \qquad $r^{2}-$ \qquad .

Move back to page 1.4.

3. Plot the regression equation on the scatterplot, and note how well it fits. Open the entry line, move back up to $f 1(x)$, and press enter.
According to this linear model, for how many miles, d, could you hear the station if $r=90$ miles?
Hint: Remember $r=9$ units corresponds to $r=90$ miles.

Move to page 2.1.

Theoretical Model

Find the theoretical function expressing d^{2} in terms of r^{2} by completing the argument below.

4. The figure for this problem shows an example of an ambiguous case of the Law of Sines since there are two triangles with two sides $O P=12, r$, and the non-included angle of 30°. Consequently, if we apply the Law of Cosines to a triangle with sides $O P=12, r, x$ and angle 30°, we obtain the equation:
\qquad
On the scale drawing, then, the two solutions for x are $O A$ and $O B$, and the distance, d, is $d=O B-O A$.
5. a. Find the two solutions for x of this equation. \qquad .
Hint: You can use "solve" command. Both solutions will be functions of r^{2}

Radio Station KTNS
Name
b. Find the difference of the two solutions and express d^{2} in terms of r^{2} in units:

$$
d^{2}=
$$

6. How does your theoretical equation compare to the regression equation?
7. According to this theoretical model, for how many miles, d, could you hear the station if $r=90$ miles?
Hint: Remember $r=9$ units corresponds to $r=90$ miles.
8. Suppose the angle between the two roads $O P$ and $O M$ is changed to θ°. Express d^{2} in terms of r^{2} and θ :
$d^{2}=$ \qquad
