1. What is the smallest number that has three different prime factors?

2,3 and 5 are the smallest prime numbers, therefore $2 \times 3 \times 5=30$ is the smallest number with three different prime factors.
2. What is the smallest number that has the factors:
a) 2,3,5 and 7

2,3,5 and 7 are all prime; therefore: $2 \times 3 \times 5 \times 7=210$ is the smallest number that contains all these factors.
b) 2, 3, 5, 6 and 7
$2 \times 3 \times 5 \times 7=210$
3. Comment on your answers to parts (a) and (b) in the previous question:

The number 6 is redundant in the computation since the prime factorisation of 6 is 2×3. Any number that has 2 and 3 in its prime factorisation will have 6 as one of its factors. The answer is therefore 210 for both parts (a) and (b).
4. What is the smallest number that has the factors:
a) 2, 4, 6 and 7
$2 \times 2 \times 3 \times 7=84$
b) 2, 4, 7 and 12
$2 \times 2 \times 3 \times 7=84$
c) Comment on your answers to parts (a) and (b). Include a discussion about how you obtained your answers.
The prime factorisation of 84 is $2^{2} \times 3 \times 7$. The prime factorisation can be used to produce the factors 4 and 12. Students may refer to 'common' factors in their answers or may talk about 'working backwards.' This often includes multiplying all the numbers: $2 \times 4 \times 6 \times 7=336$ and gradually reducing this quantity. When a student uses this approach they have a lesser understanding of the significance of prime factorisation.

5. What is the smallest number that contains all the numbers from $\mathbf{1}$ to $\mathbf{2 0}$ as its factors?

232792560 has prime factorisation: $2^{4} \times 3^{2} \times 5 \times 7 \times 11 \times 13 \times 17 \times 19$. Students need to identify all the prime numbers between 1 and $20: 1,2,3,5,7,11,13,17$ and 19 . In addition to these factors, some need to be repeated in order to obtain the remaining numbers such as $16=2^{4}$. Another alternative is for students to write down the prime factorisation of the numbers from 1 to 20 and use this information to determine the answer.

Assessment Task Solutions
 TI-30XB MultiView ${ }^{\text {mim }}$: Factors in their Prime

6. The following numbers are relatively large. A systematic approach should be used to identify the prime factors. Mathematical shorthand is also appropriate for the prime factor expression.

Write down the prime factorisation of each of the following:
a) $512=2^{9}$
b) $497664=2^{11} \times 3^{5}$
c) $6561=3^{8}$
d) $119744=2^{6} \times 1871$
e) $31104=2^{7} \times 3^{5}$
f) $15625000=2^{3} \times 5^{9}$
7. Explain any strategies you used in question 6 to determine the prime factorisation of each number.

Repeated division using basic number facts as a guide.
For example:

- $15625000 \div 5=3125000$
- $3125000 \div 5=625000$
- $625000 \div 5=125000$

This process can continue whilst the last digit of the number is either a 0 or a 5.
8. Write down the prime factorisation of your home phone number.

Does anyone in your class have a prime phone number?

Answers will vary. Answers can be checked using a CAS calculator or a website that completes prime factorisation, such as: http://www.cryptographic.co.uk/factorise.html
9. Write down the prime factorisation of this year (and subsequent years).

```
2009= 7}\mp@subsup{}{}{2}\times4
2010=2 < 3 < 5 < 6 × 7
2011 = Prime
2012= 2 2 * 503
2013=3\times11\times61
```

10.When is the next prime year?

Next prime year is: 2011, followed closely by 2017 and then 2027. Note also that 2003 was a prime year.

Student Worksheet 2 Solutions TI-30XB MultiView ${ }^{\text {Tm }}$: Factor Tree

A factor tree is a visual way to represent the factors of a number. The last row of factors have something in common, they are all prime numbers. Factor trees are helpful in finding the'prime factors' of a number.

A factor tree for the number 24 is shown below:

Observations:

1. The first line: 8×3 is not the only possibility.
2. The product of each line is 24 :

$$
\begin{aligned}
& 8 \times 3=24 \\
& 4 \times 2 \times 3=24 \\
& 2 \times 2 \times 2 \times 3=24
\end{aligned}
$$

3. The last line consists of prime numbers. ${ }^{1}$
4. Fill in the missing numbers for these factor trees: Shown below

5. Write down any observations you can make about the bottom row of factors for each of the factor trees for the number 24?

- The bottom row has the same set of numbers.
- The numbers in the bottom row are all prime. (Prime factorisation)

Student Worksheet 2 Solutions
 TI-30XB MultiView ${ }^{\text {T: }}$: Factor Tree

3. Complete the factorisation trees for each of the following: Check that the product of the factors in each line equals the original number.

Student Worksheet 2 Solutions
 TI-30XB MultiView ${ }^{\text {Tm }}$: Factor Tree

4. Complete the factorisation trees for each of the following:

Answers will vary... but the prime factorisation will be the same:
a) $21=7 \times 3$
b) $45=3 \times 3 \times 5$ or $3^{2} \times 5$
c) $60=2 \times 2 \times 3 \times 5$ or $2^{2} \times 3 \times 5$
d) $49=7 \times 7$ or 7^{2}
e) $64=2 \times 2 \times 2 \times 2 \times 2 \times 2$ or 2^{6}
f) $81=3 \times 3 \times 3 \times 3$ or 3^{4}
5. Write down the original number for each of the following prime factor expressions:
a) $2 \times 2 \times 2 \times 3=24$
b) $3 \times 3 \times 5 \times 7=315$
c) $2 \times 2 \times 3 \times 5=60$
d) $2 \times 3 \times 3 \times 11=198$
e) $5 \times 7 \times 11=385$
f) $13 \times 17=91$
6. Write down all the prime numbers between 1 and 60 .
$2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59$.
7. Write down the prime factorisation of each of the following:
a) $42=2 \times 3 \times 7$
b) $225=3^{2} \times 5^{2}$
c) $180=2^{2} \times 3^{2} \times 5$
d) $490=2 \times 5 \times 7^{2}$
e) $640=2^{7} \times 5$
f) $243=3^{5}$
8. Compare your answers from question 4 to those in question 7.

The numbers in question 7 are multiples of the numbers in question 5 . Using this information it is easy to determine the prime factorisation of the larger numbers. Example: $60=2^{2} \times 3 \times 5$, but $180=60 \times 3$, therefore $180=2^{2} \times 3 \times 5 \times 3$ or $2^{2} \times 3^{2} \times 5$.

Student Worksheet 2 Solutions
 TI-30XB MultiView ${ }^{\mathrm{Tm}}$: Factor Tree

9. Use your answers to question 7 to help write down the prime factorisation of each of the following:
a) $294=42 \times 7$
$=2 \times 3 \times 7^{2}$
b) $4725=225 \times 21$
$=3^{3} \times 5^{2} \times 7$
c) $2520=180 \times 14$
$=2^{3} \times 3^{2} \times 5 \times 7$
d) $16170=490 \times 33$
$=2 \times 3 \times 5 \times 7^{2} \times 11$
e) $14080=640 \times 22$
$=2^{8} \times 5 \times 11$
f) $18711=234 \times 77$
$=3^{5} \times 7 \times 11$
