II-nspire

Graphical Analysis

Name \qquad
ID: 9988

Class \qquad

In this activity, you will explore:

- Analyzing graphs of polynomial functions

Open the file PreCalcAct05_GraphicalAnalysis_EN.tns on your handheld and follow along with your teacher to work through the activity. Use this document as a reference and to record your answers.

Problem 1 - Examining a complete graph

For the complete graph shown on page 1.5, place a Point On the graph of $\mathbf{f}(x)$ and drag the point along the graph to identify its key features.
zeros:
y-intercept:

minimum points:
maximum points:
increasing intervals:
decreasing intervals:
positive intervals.
negative intervals:
end behavior: as $x \rightarrow+\infty, f(x) \rightarrow$ as $x \rightarrow-\infty, \mathbf{f}(x) \rightarrow$ \qquad
\qquad

- Describe how to identify increasing/decreasing intervals.
- Describe how to identify positive/negative intervals.

Problem 2 - Hidden behavior

- On page 2.2, adjust the Window Settings until you have a complete graph. Sketch it to the right, and indicate the viewing window.
- Where does the "hidden behavior" occur, and how did you find it?
- What key features might you have missed if you did not adjust the Window Settings to obtain a complete graph?

Problem 3 - Minimum and maximum points

The complete graph of a polynomial function is shown in page 3.2.
Each minimum and maximum is labeled as relative or absolute.

- Based on your observations, explain the difference between a relative minimum or maximum and an absolute minimum or maximum.
- On page 3.4, adjust the Window Settings until you have a complete graph. Sketch it to the right, and indicate the viewing window.
- Find all extrema and identify them as relative or absolute.

Problem 4 - More practice

- On page 3.4, adjust the Window Settings until you have a complete graph. Sketch it to the right, and indicate the viewing window.
- Identify its key features, including whether each maximum or minimum is relative or absolute:
zeros:
y-intercept:
minimum points:
maximum points:
increasing intervals:
decreasing intervals:
positive intervals:
negative intervals:

$$
\begin{aligned}
\text { end behavior: } \text { as } x \rightarrow+\infty, f(x) & \rightarrow \\
\text { as } x \rightarrow-\infty, f(x) & \rightarrow
\end{aligned}
$$

