TEXAS INSTRUMENTS

ALGEBRA I ACTIVITY 14: PYTHAGOREAN THEOREM WITH EQUATION SOLVER Tlalgebra.com

 ACTIVITY OVERVIEW: In this activity we will Enter the Pythagorean Theorem into Equation Solver Use Equation Solver to find missing lengths in right triangle problems 	
Equation Solver can solve an equation in several variables for zero given values for all the variables but one.	화에는 NUM CPX PRB 4수회 5: * 6:fMin(7:fMax(
Press MATH to locate 0: Solver and press ENTER.	8:nDeriv(9:fnInt(MBSolver…
Given the Pythagorean Theorem $a^2 + b^2 = c^2$ written in the form $a^2 + b^2 - c^2 = 0$, the Equation Solver can find a, b or c given values for the other two. Use the ALPHA key to help you enter the equation as shown. Press ENTER.	EQUATION SOLVER eqn:Ø=A²+B²-C²∎
The screen shows the three variables and a default boundary of a really small number to a really large number (-1 x 10^{99} to 1 x 10^{99}). In some situations when there would be more than one solution, you can set different boundaries to indicate which solution is desired.	A ² +B ² -C ² =0 A=0 B=0 C=0 bound=(-1ε99,1
Test the Equation Solver with something for which you know the result to verify that you have entered everything correctly. Type in values of 3 for A and 4 for B . Move your cursor next to C .	A²+B²-C²=0 A=3 B=4 C=∎ bound=(-1£99,1

To solve for C , press <u>ALPHA</u> <u>ENTER</u> (green "solve" command above the "enter" key). The result of "5" is the expected result. Now you can use the equation solver to solve several problems with Pythagorean Theorem.	A ² +B ² -C ² =0 A=3 B=4 •C=5 bound=(-1E99,1 •left-rt=0
The straight distance between home plate and second base on a baseball diamond is the hypotenuse of a right triangle. The distance from base to base is 90 feet. To find the hypotenuse, enter 90 for both A and B . Delete the value for C .	A ² +B ² -C ² =0 A=90 B=90 C= bound=(-1E99,1 left-rt=0
Move your cursor beside C , press <u>ALPHA ENTER</u> . The distance from home plate to second base is about 127.3 feet.	A ² +B ² -C ² =0 A=90 B=90 •C=127.27922061 bound=(-1£99,1 •left-rt=0
The base of a right triangle is 18 units, and its hypotenuse is 22.5 units. What is its height? Enter 18 for A (or B) and 22.5 for C . Move the cursor beside B (or A).	A ² +B ² -C ² =0 A=18 B= ■ C=22.5 bound=(-1€99,1… left-rt=0
Press [ALPHA] [ENTER]. The height of the triangle is 13.5 units.	A ² +B ² -C ² =0 A=18 •B=13.4999999999 C=22.5 bound=(-1ɛ99,1 •left-rt=0