Logarithms

ACMNA267 - Real Numbers

Name: Score:					1	*** O
					TI-Navigator	Student 30 mir
Tead	her:					
Q.1.	If $a > 0$ and $b > 0$ then $\log(a \cdot b)$ is equal to:					
	a)	$a \cdot b$	b)	a+b	c)	$\log(a) \cdot \log(b)$
	d)	$\log(a) + \log(b)$	e)	None of these		
Q.2.	If $a > 0$ then $\log(a^n)$ is equal to:					
	a)	$n \cdot \log(a)$	b)	$n + \log(a)$	c)	$a \cdot \log(n)$
	d)	$\log(a) + \log(n)$	e)	None of these		
Q.3.	If a	> 0 and $b > 0$ then $\log \left(\frac{a}{b} \right)$) is equ	al to:		
	a)	$\log(b) - \log(a)$	b)	$\log(a) - \log(b)$	c)	$\log(a) \cdot \log(b)$
	d)	$\frac{\log(a)}{\log(a)}$	e)	None of these		
		$\log(b)$				
Q.4.	If 2	x = 5 then:				
	a)	$\log_{x}(2) = 5$	b)	$\log_2(x) = 5$	c)	x = 2.5
	d)	$x = 2 \cdot \log_{10}(5)$	e)	$x = \log_2(5)$		
Q.5.	Whi	Which one of the following statements is true?				
	a)	$\log_2 2 < \log_8 8$	b)	$\log_8 2 < \log_2 8$	c)	$\log_2 2 = 0$
	d)	$\log_2 1 = 2$	e)	$\log_2 2 = \log_8 8$		
Q.6.	log	$16 + \log_2 8$ is equal to:				
	a)	$\frac{1}{2}$ b) \log_2	8	c) log ₂ 2	d) 7	e) log ₂ 24
		2 0, 82		10822	σ, ,	10g ₂ 24
Q.7.	\log_1	$_0(5^x \cdot 10^3)$ is equal to:				
	a)	$\log_{10}\left(50^{3x}\right)$	b)	$3x\log_{10}(50)$	c)	$3x + \log_{10}(50)$
	d)	$3 + x \log_{10}(5)$	e)			()
		C10 ()		$x\log_{10}\left(\frac{1}{2}\right) + 3$		

© Texas Instruments 2014. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author: P. Fox

- If $\log_{10}(y) = \log_{10}(x) + 2$ then Q.8.
 - $\frac{\log_{10}(y)}{\log_{10}(x)} = 2$
- $\log_{10}\left(\frac{y}{x}\right) = 2$
- $\log_{10}\left(\frac{x}{y}\right) = 2$

- d) $\log_{10}(x+y)=2$
- e) $\log_{10}(x-y)=2$
- Q.9. If $\log_4\left(\frac{1}{a}\right) = -1$, then a equals:
 - a) 1

- c) -4 d) $\frac{1}{4}$ e) $-\frac{1}{4}$
- Q.10. If $\log_a(12) = 1.079$ and $\log_a(3) = 0.477$ then $\log_a(4)$ is equal to:
 - a) $\log_a(1.079 0.477)$

1.079 - 0.477

- d) $\log_a \left(\frac{1.079}{0.477} \right)$
- e) None of these