Complex Roots: A Graphical Solution

Student Worksheet

Introduction

In this activity, you will explore the relationship between the complex roots of a quadratic equation and the related parabola's graph. Open the file Complexroots.tns on your TI-Nspire handheld device to work through the activity.

Recall that the real solutions/roots/zeros of a quadratic equation of the form $ax^2 + bx + c = 0$ are the x-intercepts of its related parabola's graph and can be represented by one of two situations.

Situation 1

- 1. Advance to Page 1.3 by pressing (ctr) and the right side of the NavPad.
- 2. Examine the graph of the function $f1(x) = x^2 + 2x 8$ and locate the exact solutions/roots/zeros.
 - Select (menu), choose 5:Trace, 1: Graph Trace, and cursor using the NavPad until zero displays.
 - Continue to cursor using the NavPad or type a likely value and then press (to locate the other zero when zero displays.

Q1: What are the real solutions/roots/zeros of $x^2 + 2x - 8 = 0$?

- 3. Locate the vertex of this parabola.
 - Select (menu), choose 5:Trace, 1: Graph Trace, and cursor using the NavPad until minimum displays.

Q2: Name the axis of symmetry and the coordinates of the vertex of the graph of $f1(x) = x^2 + 2x - 8$.

Q3: Describe the location of the real zeros with respect to the axis of symmetry and the vertex.

Situation 2

- 4. Advance to Page 2.1 by pressing (ctr) and the right side of the NavPad.
- 5. Examine the graph of the function $\overline{f1}(x) = x^2 4x + 4$ and locate the exact solutions/roots/zeros and the vertex.

Q4: How many distinct real solutions/roots/zeros exist?

Q5: What are the distinct real solutions/roots/zeros of x^2 - 4x + 4 = 0?

Q6: Name the axis of symmetry and the coordinates of the vertex of the graph of $f(x) = x^2 - 4x + 4$.

Q7: Describe the location of the real zeros with respect to the axis of symmetry and the vertex.

Finding Complex Roots

Q8: Name the axis of symmetry and the coordinates of the vertex of the graph of $f1(x) = x^2 + 4x + 5$.

Q9: What are the real solutions/roots/zeros?

Q10: How can you tell from the graph of a parabola whether real or complex zeros exist?

- 7. Advance to Page 3.2, find the complex solutions of $x^2 + 4x + 5 = 0$, and express in a + bi form.
 - Select (menu), choose 3: Algebra, A: Complex, and 1: Solve.
 - Type $x^2 + 4x + 5 = 0$, x inside the parentheses as shown and press $\stackrel{\sim}{=}$.

Q11: What are the complex solutions of $x^2 + 4x + 5 = 0$?

Visualizing Complex Roots

- 8. Advance to Page 3.3, use the k value in the vertex form of the graph of the function $f1(x) = x^2 + 4x + 5$, and reflect the parabola over y = k.
 - Enter the reflected function for f2(x) and graph.

Complex numbers of the form a + bi are graphed by using the x-axis as the real axis for a and the y-axis as the imaginary axis for bi.

- 9. Advance to Page 3.4 and plot the complex roots.
 - Select (menu) and choose 6: Points & Lines and 1: Point.
 - Move pencil to each complex root (point on will display) and press or (%).
 - Press (esc) to exit this menu.
- 10. Draw the segment joining the plotted complex roots.
 - Select (menu) and choose 6: Points & Lines and 5: Segment.
 - Cursor to each plotted complex root and press (a) or (b) and (ss) to exit this menu.
- 11. Locate the midpoint of the segment joining the plotted complex roots.
 - Select (menu) and choose 9: Construction and 5: Midpoint.
 - Cursor to the segment and press (a) or (4) and (80) to exit this menu.
- 12. Rotate clockwise the segment joining the plotted complex roots about its midpoint.
 - Select (menu) and choose A: Transformation, 4: Rotation.
 - Select the segment, then select the center point of the rotation (segment midpoint), and then select three points that determine a clockwise rotation by 90° (top endpoint of segment, midpoint, and lower endpoint of segment) for the rotation angle.
- Q12: Where are the endpoints of the rotated segment joining the plotted complex roots located?
- 13. Locate the zeros of the reflected function (f2(x)).
 - Select (menu) and choose 6: Points & Lines and 3: Intersection Point(s).
 - Cursor to the *x*-axis, press (a), cursor to the reflected function, and press (a).
 - Press (to return to the graph.
- 14. Determine the coordinates of the zeros of the reflected function.
 - Select (menu), choose 1: Actions and 7: Coordinates and Equations, cursor to one of the zeros, and press (in) or (iv) twice.
 - Cursor to the other zero and press or 🛠 twice.
- **Q13**: What are the coordinates of the zeros of the reflected function?
- **Q14**: What can you conclude about the location of the roots of the function $f1(x) = x^2 + 4x + 5$ and the endpoints of the rotated segment?
- **Q15:** Explain how the complex roots of a quadratic equation can be found using the graph of its related function.

