Exploring Probability with Dice and Test Scores

By Andrew Dixon \& Amy Forgey

Activity Overview

1. In this activity students will investigate probabilities of independent events and interpret the probabilities they calculate.
2. At the $8^{\text {th }}$ grade level, this activity can be used to solve simple problems involving probability and compare probabilities of events.

Concepts

TN Grade 8 Standards

Grade Level Expectations:
GLE 0806.1.5 Use mathematical ideas and processes in different settings to formulate patterns, analyze graphs, set up and solve problems and interpret solutions.

GLE 0806.5.1 Explore probabilities for compound, independent and/or dependent events.
GLE 0806.5.2 Select, create, and use appropriate graphical representations of data (including scatterplots with lines of best fit) to make and test conjectures.

Checks for Understanding:
0806.5.1 Solve simple problems involving probability and relative frequency.
0806.5.2 Compare probabilities of two or more events and recognize when certain events are equally likely.

State Performance Indicators
N/A

Teacher Preparation

Before the activity, the teacher should pre-load the activity file ExploringProbability.tns on to the student handheld devices. This can be done via Connect-to-Class software, TI-Nspire computer link software, or by using link cables with the handhelds.

Classroom Management Tips

1. This activity can be done by the students using the pre-made document file or by them creating various parts of the file as chosen by the teacher.
2. This activity is intended to be student-centered with the students working in small cooperative groups.

TI-Nspire ${ }^{\text {TM }}$ Applications
\checkmark Notes
\checkmark Lists \& Spreadsheets
\checkmark Data \& Statistics
\checkmark Calculator

Step-by-Step Directions

Steps:

1. From the Home Screen:

- Choose 2 My Documents.
- Navigate to the appropriate folder containing the .tns file ExploringProbability.tns.
- Highlight the file and press | 5 N |
| :--- |
| onter. |
- Choose whether or not to save changes to any previously opened document.

Home Screen

Title Page

| 1.3 | 1.4 | 1.5 |
| :--- | :--- | :--- | :--- |
| Problem1: | | |
| Ever wonderingProb how lity | | |
| get a 7 or 11 ? Ever been four spaces from | | |
| Boardwalk in Monopoly and wanted to know | | |
| how likely it is to land on the space? Well, in | | |
| this problem you will run a probability | | |
| simulation to find the experimental probability | | |
| of the sum of two dice. | | |

Page 1.3

Time required: $\mathbf{4 5}$ to 90 minutes
4. Pages 1.4 through 1.6 are question and answer pages. The students should answer questions before moving to the first spreadsheet.
5. Page 1.7 is a List and Spreadsheet page for the students to enter the number of possible outcomes for each sum.
6. Page 1.8 is the graph of the spreadsheet for the previous page. Students may need to go to the menu screen, 5 : Window/Zoom, 2 : Zoom data.
7. Page 1.9 gives instructions on how to run the dice simulation.

Page 1.4

Page 1.7

Page 1.8
41.7 1.3 $1.9>$ *Exploring Pr..res $\nabla \quad$ ti]

On the next page you will use the randint function to generate rolling a die 50 times.
Since a die has numbers 1 through 6, you want to enter randint $(1,6,50)$ in the cell beneath the column name red_die 1 and in the cell beneath the column name green_die1. In the third column you will enter $a+b$ under the heading sum_totall to sum the two die.

Page 1.9

Subject: Mathematics
Time required: $\mathbf{4 5}$ to 90 minutes
8. Page 1.10 is a spreadsheet containing three columns. The first two columns are for simulating rolling two dice. In the cell beneath the columns' headers students should enter randint $(1,6,50)$ The third column is the sum of the two dice. The cell underneath sum_total1 should contain $a+b$.
9. Page 1.11 is the graph of the spreadsheet from page 1.10. Students will need to go to the menu screen, 5: Window/Zoom, 2: Zoom data.
10. Page 1.12 asks the students a question about the histogram from 1.11 and the graph from 1.8. Students should compare and contrast the two graphs.
11. Pages 1.13 through 1.19 instruct students to
run the simulation two more times with more dice rolls. Page 1.16 asks the same question as page 1.12.

Page 1.10

Page 1.11

Page 1.12

Run the same experiment performing 250 trials. Use randint $(1,6,250)$ in the cell beneath the column name red_die2 and in the cell beneath the column name green_die2. In the third column you will enter $a+b$ under the heading sum_total2 to sum the two die.
You will need to zoom in on the data as you did on the first simulation.

Page 1.13

Time required: $\mathbf{4 5}$ to 90 minutes
12. Page 1.20 asks the students to draw conclusions on what happened when they increased the number of trials.
13. Page 2.1 introduces the first Test Score problem in this activity.
14. Page 2.2 is a Q\&A page. The student should read the question and arrow down to get to the answer section of the page. Answers to all questions are included in the Assessment and Evaluation section at the end of this handout.
15. Page 2.3 contains a Notes page as well as a Lists \& Spreadsheets page. The student should fill in the outcomes (When the error box appears, the student should press enter until it goes away). These outcomes will be filled in on every spreadsheet that has the column heading outcomes throughout the entire document.

Page 1.20

1.19	1.20
Problemk:	
"Beep beep beep beep. Beep beep beep	
beep." Your alarm clock wakes you up at	
6:30 in the morning, and you roll over and hit	
Xhe snooze button hoping to catch just 5 more	
minutes of sleep. All of the sudden, you	
remember--today is your social studies	
midterm, and you haven't studied at all! Not	
onlv have vou not studied. but vou've slent	

Page 2.1

1.20	2.1	2.2
Question		
Since there are only two choing Pr..res ∇		
question (true or false), what is the		
probability that you will guess the correct		
answer for the first question? For the		
second question? For the third question?		
Recall: The probability of a certain outcome		
As the number of ways it could occur		

Page 2.2

Page 2.3
16. To complete page 2.6, the student can either use the Calculator on the following page or press the Scratchpad button to bring of the Scratchpad Calculator.
17. Students must answer a question about the probability of passing the test on page 2.8. They should say that the probability of passing the test is $\frac{1}{8}$ and give a brief explanation of how they reached that answer.
18. Page 2.9 introduces the second Test Score problem. Students should complete this problem using similar strategies from the previous problems.

Page 2.9

Assessment \& Evaluation

\checkmark The teacher can collect student files using Connect-to-Class software or TINspire ${ }^{\text {TM }}$ Computer Link software.
\checkmark Sample answers to questions in .tns file:
1.4 Q: What sums could you have if you rolled two dice at the same time?

A: We would have 2 through 12
1.5 Q: Are the sums equally likely?

A: No. For instance, the sum 2 can only be accomplished one way while 3 can come from 1 and 2 or 2 and 1.
1.6 Q: Which sum is most likely? Which sum is least likely? Explain your answers

A: Seven is the most likely. It can happen when rolling 1 then 6, 2 then 5,3 then 4,4 then 3,5 then 2 , and 6 then 1 . Two and twelve are the least likely. Two only happens when rolling 1 then 1 . Twelve only happens when rolling 6 then 6 .
1.12 Q: Is the histograph similar to the outcomes graph you did earlier? Why are the graphs similar or not similar?

A: The histographs should look like the graph they generated from the number of possible outcomes. The graph will follow the probability distribution curve.
1.20 Q: What do you notice about the graphs as you increase the number of experiments?
A: As the number of dice rolls goes up the histographs will fit the probability distribution curve better than with fewer trials.
2.2 Q: Since there are only two choices for each question (true or false), what is the probability that you will guess the correct answer for the first question? For the second question? For the third question?
A: The probability of guessing the correct answer for each question is $\frac{1}{2}$ or 0.5 .
2.3 Q: Using C for a correct guess and W for a wrong guess, list all the possible outcomes when answering 3 questions on a test on the spreadsheet above.
A: CCC, CCW, CWC, WCC, CWW, WWC, WCW, WWW
2.4 Q: If you are truly guessing, what is the probability associated with each of the eight outcomes?

A: $\frac{1}{8}$
2.5 Q: Describe how you found the probabilities on the previous page.

A: By dividing the number of ways to achieve the outcome by the number of possible outcomes.
2.6 Q: Which of these outcomes will give you at least a 70\% (the lowest passing grade)?
A: CCC
2.8 Q: Based on the analysis you have done, what is the probability that you will pass a 3 question true-or-false test by guessing? Explain.
A: $\frac{1}{8}$ because only one of the eight possible outcomes will give a score of 70% or higher.
2.10 Q: Since there are three choices for each question, what is the probability that you will guess the correct answer on a question? What is the probability that you will guess the wrong answer on a question?
A: The probability that I will guess the correct answer is $\frac{1}{3}$ and the probability that I will guess the wrong answer is $\frac{2}{3}$.
2.11 Q: If we use C for a correct guess and W for a wrong guess, as we did in the first part of this problem, what are the possible outcomes when answering 3 questions on a test? Should they be the same as on a three-question true-orfalse test?
If you think they are the same, enter "outcomes" beneath A to automatically fill the column. Otherwise, call it "outcomes2."
A: The outcomes will be the same as on a three-question true-or-false test, so the student should enter "outcomes" beneath the heading of column A.
2.12 Q: What is the probability associated with each of the eight outcomes? Enter your answers in the following spreadsheet.
A:

outcomes	probabilities
CCC	$\frac{1}{3} \times \frac{1}{3} \times \frac{1}{3}=\frac{1}{27}$
CCW	$\frac{1}{3} \times \frac{1}{3} \times \frac{2}{3}=\frac{2}{27}$
CWC	$\frac{1}{3} \times \frac{2}{3} \times \frac{1}{3}=\frac{2}{27}$
WCC	$\frac{2}{3} \times \frac{1}{3} \times \frac{1}{3}=\frac{2}{27}$
WWC	$\frac{2}{3} \times \frac{2}{3} \times \frac{1}{3}=\frac{4}{27}$

WCW	$\frac{2}{3} \times \frac{1}{3} \times \frac{2}{3}=\frac{4}{27}$
CWW	$\frac{1}{3} \times \frac{2}{3} \times \frac{2}{3}=\frac{4}{27}$
WWW	$\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3}=\frac{8}{27}$

2.13 Q: How did you find the probabilities on the previous page?

A: By multiplying the probability of a wrong answer $\left(\frac{2}{3}\right)$ by the probability of a correct answer $\left(\frac{1}{3}\right)$ according to the number of times it appears. For example, for the outcome CCW, the probability would be $\frac{1}{3} \times \frac{1}{3} \times \frac{2}{3}=\frac{2}{27}$.
2.14 Q: Which of these outcomes will give you at least a 70% (the lowest passing grade)?
A: CCC
2.16 Q: Based on the analysis you have done, what is the probability that you will pass a 3 question multiple-choice test with three choices for each question by guessing? Explain.
A: $\frac{1}{27}$ because only the outcome CCC gives a score of 70% or higher on the test, and the probability of getting all three answers correct is $\frac{1}{27}$.

Student TI-Nspire ${ }^{\text {TM }}$ Document

ExploringProbability.tns

Time required: $\mathbf{4 5}$ to 90 minutes

Subject: Mathematics
Time required: $\mathbf{4 5}$ to 90 minutes

This activity was adapted from Navigating Through Probability in Grades 6-8, a publication from the National Council of Teachers of Mathematics Navigation Series.

