\qquad
\qquad

Activity 8

Midsegment of a Triangle

Construct the geometric object by following the instructions below, and then answer the questions about the object.

1. From the Lines Toolbar, select Triangle.
2. Create a triangle and label it $\triangle A B C$.
3. Create the midpoint of a side of the triangle.
a. From the Construct Toolbar, select Midpoint.
b. Move the cursor toward side $\overline{A B}$ until the message Midpoint of this side of the triangle appears. Click once.
c. Label this point X.
4. Create the midpoint of $\overline{B C}$ and label it Y.
5. Create the midpoint of $C A$ and label it Z.
6. From the Lines Toolbar, select Triangle and create triangle $\triangle X Y Z$.

The sides that created triangle $\triangle X Y Z$ are the midsegments of triangle $\triangle A B C$. They connect the midpoints of the sides of a triangle.

Figure 8.1
7. From the Check Property Toolbar, select Parallel.
8. Move the cursor toward $\overline{X Y}$ until the message Is this side of the triangle appears. Click once.
9. Move the cursor toward $\overline{A C}$ until the message Parallel to this side of the triangle appears. Click once.
10. Drag to the upper right corner and click.
11. Are the two segments parallel?
12. Check to see if $\overline{Z Y}$ and $\overline{X Z}$ are parallel to their opposite sides.
13. Alter the triangle by dragging a vertex of triangle $\triangle A B C$.
14. Are all the midsegments still parallel to their opposite side?
15. What can you conclude about the relationship between the midsegment and its opposite side?
16. Measure and record the following lengths in the table below.

Side Length	Midsegment Length
$A B=$	$Z Y=$
$B C=$	$Z X=$
$A C=$	$X Y=$

17. How does the side length compare to the length of the midsegment opposite the side?
18. Alter the triangle by dragging one of its vertices.
19. Record the new measurements in the table below.

Side Length	Midsegment Length
$A B=$	$Z Y=$
$B C=$	$Z X=$
$A C=$	$X Y=$

20. Alter the triangle by dragging one of its vertices.
21. Record the new measurements in the table below.

Side Length	Midsegment Length
$A B=$	$Z Y=$
$B C=$	$Z X=$
$A C=$	$X Y=$

22. What can you conclude about the length of the midsegment compared to its opposite side?
23. Find the perimeter of triangle $\triangle A B C$.
a. From the Measure Toolbar, select Distance and Length.
b. Move the cursor toward triangle $\triangle A B C$ until the message Perimeter of this triangle appears. Click once.
c. Label this the perimeter of $A B C$.
24. Find and label the perimeter of triangle $\triangle X Y Z$.
25. Find the area of triangle $\triangle A B C$.
a. From the Measure Toolbar, select Area.
b. Move the cursor toward triangle $\triangle A B C$ until the message This triangle appears. Click once.
c. Label this the area of $\triangle A B C$.
26. Find and label the area of triangle $\triangle X Y Z$.

Figure 8.2
27. Record your measurements in the table below. Alter your triangle two more times by dragging one of the vertices, then complete the table.

Perimeter $\triangle \mathbf{A B C}$	Perimeter $\triangle \mathbf{X Y Z}$	Area $\triangle \mathbf{A B C}$	Area $\triangle \mathbf{X Y Z}$

28. What is the relationship between the perimeter of $\triangle A B C$ and the perimeter of $\triangle X Y Z$?
\qquad
\qquad
29. What is the relationship between the area of $\triangle A B C$ and the area of $\triangle X Y Z$?
\qquad
\qquad
30. Delete all of your measurements.
31. Measure and label the angles in $\triangle A B C$ and $\triangle X Y Z$.
32. Drag the vertices of $\triangle A B C$ so that it is an acute triangle.
33. What type of triangle is $\triangle X Y Z$?
34. Drag one of the vertices of $\triangle A B C$ so that it is an obtuse triangle.
35. What type of triangle is $\triangle X Y Z$?
36. Open a new figure.
37. Create an isosceles triangle.
a. Create and label segment $\overline{A B}$.
b. Measure the length of $\overline{A B}$.
c. From the Construct Toolbar, select Measurement Transfer.
d. Click on the length of $\overline{A B}$ and then point B.
e. A dotted line will appear. Click once and a point will appear. Label this C.
f. Create segment $\overline{A C}$ and $\overline{B C}$.
38. Measure and label the length of $\overline{A C}$ and $\overline{B C}$.
39. Construct the three midpoints of the sides of triangle $\triangle A B C$, labeling them as shown in Figure 8.3.

Figure 8.3
40. From the Lines Toolbar, select Triangle and create triangle $\triangle R S T$.
41. Measure the lengths of the sides of $\triangle R S T$.
42. What type of triangle is $\triangle R S T$?
43. Alter the triangle two more times by dragging a vertex of $\triangle A B C$.
44. What type of triangle is $\triangle A B C$? \qquad $\triangle R S T ?$ \qquad .
45. Clear the screen.
46. Create an equilateral triangle and label it $\triangle E F G$.
a. From the Lines Toolbar, select Regular Polygon.
b. Click once and drag to form a dotted circle. Click to deselect the circle.
c. Click and hold the mouse button and drag until a triangle appears. Release the mouse button.
47. Measure and label the lengths of the sides of $\triangle E F G$.
48. Create the midpoints of the three sides of $\triangle E F G$, labeling them as shown in Figure 8.4.

Figure 8.4
49. From the Lines Toolbar, select Triangle and create $\triangle H I J$.
50. Measure and label the lengths of the sides of $\triangle H I J$.
51. What type of triangle is $\triangle H I J$?
52. Alter the triangle two more times by dragging one of the vertices of $\triangle E F G$.
53. What type of triangle is $\triangle E F G$? \qquad $\triangle H I J ?$ \qquad
54. What is the relationship between the original triangle and the triangle created by the midsegments of the original triangle?
\qquad
\qquad
\qquad

