

| Name  |  |
|-------|--|
| Class |  |

### Exercise 1 – Cost per person for a pizza order

The coach of the football team wants to order individual pizzas to eat after their game. Pizza-To-Go charges \$5 for each individual pizza, plus an overall delivery charge of \$7. The coach needs to figure out the cost per player so that each player who wants pizza can contribute enough to cover the total cost.

- What do you think will happen to the cost per player for pizza as more team members decide they want to order pizza?
- Fill out the table on page 1.2. Is your prediction correct?
- Write a function for the cost per player.
- Graph your function as **f1**(*x*) on page 1.3. Sketch the graph on the coordinate grid to the right.
- As the number of players increases, what happens to the cost per player? What number does the cost per player approach? Explain what this means in the context of the problem.

## Exercise 2 – Investigating end behavior

On page 2.1, you will see the graph of  $\mathbf{f}(x) = \frac{2x+3}{x+1}$ .

• Change the window so that the x-axis goes from -500 to 500. What happens to the graph?

Investigate the behavior of f(x) on page 2.2. On the *Calculator* screen, enter positive values of x that approach positive infinity by typing "f(" followed the value for x. In the spreadsheet, enter negative values of x that approach negative infinity in Column A.

- What value is f(x) approaching as x approaches positive or negative infinity?
- How is this supported by your graph? What can you see in the equation that might support your thinking? Explain.

| 1.1 1.2 1.3 | 🕨 EndBehavior 🗢 | <li>X 🛛 🔀</li> |
|-------------|-----------------|----------------|
| 8 V         |                 |                |
| -           |                 |                |
|             |                 |                |
|             |                 |                |
| -           |                 |                |
| - 1         |                 | ,              |
| 📧 f1(x)=    |                 |                |

# Investigation of End Behavior

The graph of  $\mathbf{g}(x) = \frac{-6x-1}{3x+4}$  is displayed on page 3.1.

• Extend the axes of the graph as before. What do you notice?

Investigate the behavior of g(x) on page 3.2. Choose several values of x to explore.

- What value is **g**(*x*) approaching as *x* approaches infinity?
- How is this supported by your graph? What can you see in the equation that might support your thinking? Explain.

On page 4.1, the graph of  $\mathbf{h}(x) = \frac{x+3}{x^2+1}$  is shown.

• Adjust the window as done in previous exercises. What do you observe?

Investigate the behavior of h(x) on page 4.2 as before.

• What is the end behavior of **h**(*x*)? How is this supported by your graph? What can you see in the equation that might support your thinking? Explain.

The graph of  $\mathbf{j}(x) = \frac{10x+2}{x-6}$  appears on page 5.1.

Use the table to investigate the values of **j** as *x* gets larger and smaller.

• What is the end behavior of **j**(*x*)? Explain.

On page 5.2, the graph of  $\mathbf{k}(x) = \frac{x+3}{2x-1}$  is displayed.

Again, use the table to investigate the values.

• What is the end behavior of **k**(*x*)? Explain.

The graph of  $\mathbf{m}(x) = \frac{x+5}{2x^2+2}$  appears on page 5.3.

Use the calculator to investigate the values of  $\mathbf{m}$  as x gets larger and smaller.

• What is the end behavior of **m**(*x*)? Explain.

#### Bringing it all together

• Summarize how you to find the end behavior of a rational function on a graph. How about on a table? What is end behavior in your own words?

Recall the end behavior of the following functions from this activity:

- $f1(x) = \frac{5x+7}{x}$  end behavior: y =\_\_\_\_
- $f(x) = \frac{2x+3}{x+1}$  end behavior: y =\_\_\_\_\_
- $g(x) = \frac{-6x-1}{3x+4}$  end behavior: y =\_\_\_\_\_
- $j(x) = \frac{10x+2}{x-6}$  end behavior: y =\_\_\_\_\_
- $k(x) = \frac{x+3}{2x-1}$  end behavior: y =\_\_\_\_\_
- Based on what you observe in the above examples, what do you think is the end behavior of the function  $f(x) = \frac{8x-1}{2x+3}$ ?
- What is the end behavior of a rational function of the form  $f(x) = \frac{ax+b}{cx+d}$  where *b* and *d* are any integer and *a* and *c* are any nonzero integers?

## Extension

Examine the end behavior of the function shown on page 6.1. Then explore changing the definition of f1(x) and dragging and rotating the line given by f2(x).