Ų	Xtreme Calculus: Part 2
	tanimat2.89p

Name	
Class	

Part 1 – Extreme Cyclist

Press \bullet + [Y=]. Select F1:Tools > 8:ClearFunctions. In y1, type the expression 8.8+6x–16x²|0≤x≤0.95. While the function is highlighted, select F6:Style > 6:Path. Press \bullet + [WINDOW] and change the window settings to match those on the right. Then, press \bullet + [GRAPH]. The animation represents the position of an extreme bicyclist as he jumps off of a ledge and lands safely on the ground.

xmin=-2. xmax=3. xscl=0. ymin=-3.5 ymax=12.5 yscl=0. area=2.	F1+ F2+ ToolsZoom		
xsc1=0. ymin=-3.5 ymax=12.5 ysc1=0. (cherric).	xmin=-2 xmax=3.	•	
ýscl=0. are: 02. 	ymin=-3 ymax=12	.5	
	ýsc1=0. a∿e:∵2.		

1. Is the extreme bicyclist's initial velocity positive, negative, increasing, or zero? How do you know?

Let s = position. The definition for average velocity is the change in position divided by the time interval. Graphically, the instantaneous velocity is the slope of the tangent.

- 2. Using the position graph, what is the average velocity from 0 to 0.95 seconds? Show your work.
- 3. Using position function $s(t) = 8.8 + 6t 16t^2$, find the velocity when the time is 0.5 seconds. Show your work.

Check your answer graphically. On the HOME screen, start the program *tanimat2* by typing **tanimat2()** and pressing ENTER. Once the program begins, select **Interactive** from the first menu and press enter. Then, enter 1 (you will need to press alpha + 1) and select **TANGENTS ONLY**. Type in 0.5 and press ENTER twice. The slope of the function at x = 0.5 will appear on the screen.

- 4. Using Calculus, express the velocity of the extreme bicyclist as a function of time. Enter your function in **y1**.
- 5. What is the acceleration when t = 0.1875s? Check your answer using the *tanimat2* program using the same process as before.
- 6. Describe the velocity of the extreme cyclist. Explain you reasoning.
- 7. When is the extreme cyclist's speed positive?
- 8. Why is the extreme cyclist's speed increasing when t = 0.2s?

Part 2 – Predict the Graph

9. For the position graph below, give a correct interpretation of the graph of distance versus time provided. Also, use this space to sketch your prediction of what the corresponding velocity-time graph looks like.

Enter the following position-time function in **y1**: **when(x≤4,0.5*x,when(x≤7,x−2,5))**.

Change the window settings to match those on the right, then go back to the HOME screen and start the *tanimat2* program. In the Main Menu, select **2:Animated**, then select **LOW** sampling rate, and display **TANGENT&PTS**. Next, type 0 and press ENTER twice, and then type 10 and press ENTER twice. The velocity-time graph will be traced out on your calculator. You can trace along the velocity-time graph by pressing the left and right arrows.

10. Describe the motion of the object.

F1+ F2+ ToolsZoom			
xmin=-2. xmax=12.			
ymin=-2. ymax=6.			
ýscl=1. a∿es∵i.			
MAIN	RAD APPROX	FUNC	

Now, enter the following velocity-time function in y1: when(x \leq 5,-0.25*(x-5)^2+5,when(x \leq 7,5,-x+12))

On the right, sketch your prediction of the corresponding acceleration-time graph for the given velocity-time graph. Go to the HOME screen and start the *tanimat2* program and repeat the process from above. Does your prediction match?

11. When t = 5 s, does acceleration exist? Why?

12. When t = 7s, does acceleration exist? Why?