EP 011 - 2009 : Suite et relation de récurrence

Auteur du corrigé : François TEXIER TI-Nspire™ - TI-Nspire™ CAS

Avertissement : ce document a été réalisé avec la version 1.7

Fichier associé: EP011_2009_Suites.tns

1. Le sujet

Sujet 011 de l'épreuve pratique 2009 – Étude d'une suite définie par une relation de récurrence Énoncé

On considère la suite récurrente (u_n) de premier terme $u_1 = 0$ et telle que, pour tout entier naturel n non nul,

$$u_{n+1} = \frac{1}{2 - u_n}$$
.

1.

- a) En utilisant un tableur ou une calculatrice, donner les 40 premiers termes de cette suite.
- **b**) Représenter graphiquement le nuage de points de coordonnées $(n; u_n)$.
- c) En observant le nuage de points, quelles conjectures peut-on faire sur le comportement de cette suite ?
- 2. On cherche à déterminer une formule qui permette de calculer u_n en fonction de n.
- a) Compléter le tableau de valeurs en faisant figurer le calcul de $\frac{1}{u_n 1}$ pour les 40 premiers termes de la suite (u_n) .
- **b**) Conjecturer l'expression explicite de u_n en fonction de n.
- 3. Démontrer la formule conjecturée.

Production demandée

- Visualisation à l'écran du tableau de valeurs et du nuage de points.
- Démonstration.

Compétences évaluées

- Faire calculer les termes d'une suite.
- Représenter graphiquement un nuage de points.
- Raisonner par récurrence.

2. Corrigé

1)

a) Ouvrir une page Tableur & listes.

Nommer « n » la colonne A, puis, dans la cellule grisée de la colonne A, saisir la formule =seq(x,x,0,39,1) qui permet de créer les 40 premières valeurs de n.

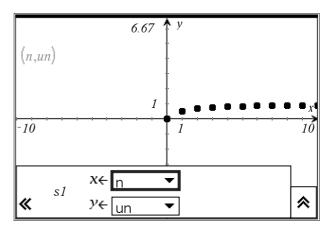
Nommer « un » la colonne \mathbf{B} , puis, en cellule $\mathbf{B1}$, entrer 0 (valeur de u_0) et ensuite en $\mathbf{B2}$ la formule indiquée cicontre et valider.

Revenir sur la cellule **B2**, puis utiliser le menu **Données**, **Saisie rapide**, puis sélectionner les cellules **B3** à **B40** et valider pour créer la suite (u_n) .

	An	^B un	С	D ^
•	=seq(x,x,0,3			
1	0	0		
2	1	1/2		
3	2	2/3		
4	3	3/4		
5	4	4/5		→
1	$B2 = \frac{1}{2-b1}$			

b) Insérer une page Graphiques & géométrie.

Dans Type de graphique, sélectionner Nuage de points ; indiquer les éléments comme ci-contre, cacher la ligne de saisie.

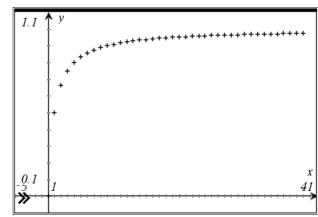


Demander un Zoom données et, éventuellement, affiner le réglage.

Le réglage de la copie d'écran ci-contre est

Xmin = -5; **Xmax** = 41; **Ymin** =
$$-0.1$$
; **Ymax** = 1.1.

c) En observant ce nuage de points, il semble que la suite soit croissante et qu'elle converge vers un réel proche de 1.



- 2)
- a) Revenir à l'écran Tableur & listes.

Nommer « vn » la colonne C, puis taper, dans la cellule grisée, la formule $=\frac{1}{\text{un}-1}$.

b) Au vu de la colonne C, il semble que

$$\frac{1}{u_n-1}=-(n+1);$$

$$\frac{1}{u_n - 1} = -(n + 1);$$
d'où $u_n - 1 = -\frac{1}{n + 1}$, soit $u_n = 1 - \frac{1}{n + 1}$.

Rajoutons une colonne **D**, nommée « wn » et entrons la formule ci-contre dans la cellule grisée.

Au vu des cette dernière colonne, il semble que la conjecture soit bonne.

	An	^B un	cl _{vn}	D			
•	=seq(x,x,0,3		=1/(un-1)				
1	0	0	-1				
2	1	1/2	-2				
3	2	2/3	-3				
4	3	3/4	-4				
5	4	4/5	-5	~			
C vn:= $\frac{1}{\text{un}-1}$							

		Bun	c _{vn}	D _{wn} ♣
*	q(x,x,0,3		=1/(un-1)	=1-1/('n+1)
1	0	0	-1	0
2	1	1/2	-2	1/2
3	2	2/3	-3	2/3
4	3	3/4	-4	3/4
5	4	4/5	-5	4/5
I	wn :=	1- <u>1</u> ' n +1		

3) Démontrons cette conjecture par récurrence.

Soit P_n la proposition :
$$u_n = 1 - \frac{1}{n+1} = \frac{n}{n+1}$$
.

Initialisation : pour
$$n = 0$$
, $u_0 = 0$ et $\frac{0}{0+1} = 0$, donc P_0 est vraie.

Hérédité : Supposons que cette proposition soit vraie pour un rang
$$k$$
;

alors
$$u_{k+1} = \frac{1}{2 - u_k} = \frac{1}{2 - \frac{k}{k+1}} = \frac{1}{\frac{k+2}{k+1}} = \frac{k+1}{(k+1)+1}$$
, donc P_{k+1} est vraie.

Conclusion: Pour tout $n \in \mathbb{N}$, P_n est vraie, donc pour tout $n \in \mathbb{N}$, $u_n = 1 - \frac{1}{n+1} = \frac{n}{n+1}$.