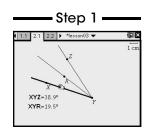
Exploring Perpendicular Bisectors

Directions: Follow the steps below. The page numbers refer to the TI-Nspire document *lesson03*.

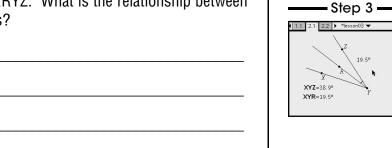
1. Examine the sketch on page 1.1. Measure and record ∠AMP and ∠BMP. ∠AMP = _____ ∠BMP = _____ What do you observe about the angles? **2.** Measure the lengths of \overline{AM} and \overline{MB} . <u>AM</u> = _____ What do you observe about these lengths? **3.** Measure the distances (lengths) \overline{AP} and \overline{PB} . <u>AP</u> = _____ What do you observe about these distances? **4.** Slowly drag point P along perpendicular bisector n. What do you notice about distances AP and BP as you drag point P?

Exploring Perpendicular Bisectors (cont.)

Directions: Follow the steps below. The page numbers refer to the TI-Nspire document *lesson03*.


5.	Define perpendicular.
6.	Define bisect.
7.	Define the perpendicular bisector of a segment.
8.	Drag point P until it appears to sit on point M. Point M is the midpoint of \overline{AB} . Is point M on perpendicular bisector n ? How do you know?
9.	What special property is true of any point located on the perpendicular bisector of a segment?
	

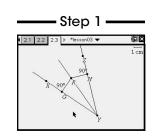
Exploring Angle Bisectors


Directions: Follow the steps below. The page numbers refer to the TI-Nspire document *lesson03*.

1. Examine the sketch on page 2.1. Grab \overline{YX} (the ray itself, not a point). Drag it to make $\angle XYZ$ larger and then smaller. This will capture the measures of $\angle XYZ$ and $\angle XYR$ and will calculate the ratio between them.

2. Now, examine the data in the spreadsheet on page 2.2. After examining the sketch and spreadsheet, what is the relationship between $\angle XYZ$ and $\angle XYR$?

3. On page 2.1, measure \angle RYZ. What is the relationship between this angle and the others?



4. \overrightarrow{YR} is considered the angle bisector of $\angle XYZ$. What is the definition of *angle bisector*?

Exploring Angle Bisectors (cont.)

Directions: Follow the steps below. The page numbers refer to the TI-Nspire document *lesson03*.

5. Examine the sketch on page 2.3. Drag point R, and observe the angle formed by \overline{RG} and \overline{YX} . What do you observe about the angle?

6. Measure the lengths of \overline{RG} and \overline{RH} . What do you observe about the lengths?

7. Slowly drag point R, and observe how the lengths of \overline{RG} and \overline{RH} change. Describe what you observe.

8. What special property is true of any point located on the bisector of an angle?

9. Complete the statement below.

The Angle Bisector Theorem states that any point on the bisector of an _____ is equidistant from _____ . So, point R is the same distance from \overline{YX} as from \overline{YZ} anywhere along angle bisector \overline{YR} .

Proving Angle Bisectors

Directions: The Angle Bisector Theorem, in order to truly be a theorem, needs to be proven using definitions, postulates, and theorems that have already been proven. Plan and write the proof of this theorem in any form (paragraph, two-column, or flowchart).

- Given: any point on the bisector of an angle
- Show: the point is equidistant from the sides of the angle
- **Hint:** The proof depends on Side-Angle-Angle (SAA) congruence.