Exploring Perpendicular Bisectors **Directions:** Follow the steps below. The page numbers refer to the TI-Nspire document *lesson03*. **1.** Examine the sketch on page 1.1. Measure and record ∠AMP and ∠BMP. ∠AMP = _____ ∠BMP = _____ What do you observe about the angles? **2.** Measure the lengths of \overline{AM} and \overline{MB} . <u>AM</u> = _____ What do you observe about these lengths? **3.** Measure the distances (lengths) \overline{AP} and \overline{PB} . <u>AP</u> = _____ What do you observe about these distances? **4.** Slowly drag point P along perpendicular bisector n. What do you notice about distances AP and BP as you drag point P? # **Exploring Perpendicular Bisectors** (cont.) **Directions:** Follow the steps below. The page numbers refer to the TI-Nspire document *lesson03*. | 5. | Define perpendicular. | |----|---| | | | | 6. | Define bisect. | | | | | 7. | Define the perpendicular bisector of a segment. | | | | | 8. | Drag point P until it appears to sit on point M. Point M is the midpoint of \overline{AB} . Is point M on perpendicular bisector n ? How do you know? | | | | | | | | 9. | What special property is true of any point located on the perpendicular bisector of a segment? | | | | | | | | | | # **Exploring Angle Bisectors** **Directions:** Follow the steps below. The page numbers refer to the TI-Nspire document *lesson03*. **1.** Examine the sketch on page 2.1. Grab \overline{YX} (the ray itself, not a point). Drag it to make $\angle XYZ$ larger and then smaller. This will capture the measures of $\angle XYZ$ and $\angle XYR$ and will calculate the ratio between them. 2. Now, examine the data in the spreadsheet on page 2.2. After examining the sketch and spreadsheet, what is the relationship between $\angle XYZ$ and $\angle XYR$? **3.** On page 2.1, measure \angle RYZ. What is the relationship between this angle and the others? **4.** \overrightarrow{YR} is considered the angle bisector of $\angle XYZ$. What is the definition of *angle bisector*? #### **Exploring Angle Bisectors** (cont.) **Directions:** Follow the steps below. The page numbers refer to the TI-Nspire document *lesson03*. **5.** Examine the sketch on page 2.3. Drag point R, and observe the angle formed by \overline{RG} and \overline{YX} . What do you observe about the angle? **6.** Measure the lengths of \overline{RG} and \overline{RH} . What do you observe about the lengths? **7.** Slowly drag point R, and observe how the lengths of \overline{RG} and \overline{RH} change. Describe what you observe. 8. What special property is true of any point located on the bisector of an angle? **9.** Complete the statement below. The Angle Bisector Theorem states that any point on the bisector of an _____ is equidistant from _____ . So, point R is the same distance from \overline{YX} as from \overline{YZ} anywhere along angle bisector \overline{YR} . ## **Proving Angle Bisectors** **Directions:** The Angle Bisector Theorem, in order to truly be a theorem, needs to be proven using definitions, postulates, and theorems that have already been proven. Plan and write the proof of this theorem in any form (paragraph, two-column, or flowchart). - Given: any point on the bisector of an angle - Show: the point is equidistant from the sides of the angle - **Hint:** The proof depends on Side-Angle-Angle (SAA) congruence.