The table below shows the winning times in the Olympic 100 meter dash from 1960 to 1992.

| Years since <br> 1960 | Men's Time <br> $(\mathrm{sec})$ | Women's Time <br> $(\mathrm{sec})$ |
| :---: | :---: | :---: |
| 0 | 10.2 | 11 |
| 4 | 10 | 11.4 |
| 8 | 9.9 | 11 |
| 12 | 10.14 | 11.07 |
| 16 | 10.06 | 11.08 |
| 20 | 10.25 | 11.06 |
| 24 | 9.99 | 10.97 |
| 28 | 9.92 | 10.54 |
| 32 | 9.96 | 10.82 |

1. Put the data into your calculator. Press STAT, then EDIT. Enter the values in $L_{1}$, $L_{2}$, and $L_{3}$.
2. Create a scatter plot for each set of data:

3. Find the trend lines (linear regressions) for each plot
a. STAT $\rightarrow$ CALC $C \rightarrow 4$ :Lin Reg $(a x+b)$
b. Enter each of the regressions, one at a time. Record the equation on the student worksheet after you find each one:
$\operatorname{Linfeg}(a x+b) \quad L_{1}, \quad \operatorname{Linfeg}(\exists x+b) L_{1}$,
Hint: The $Y_{1}$ and $Y_{2}$ are under VARS->YVARS->1:Function
c. Change the window to:

WIHCIOW
人min=-5
X $3 \times=120$
$\mathrm{CECl}=4$
Min=9
$\mathrm{Yma} \times 12$
$\mathrm{YSCl}=1$
xres=1
d. Press GRAPH. You should see both scatter plots and both trend lines.
4. Find the point of intersection for the two lines.
a. With the graphs on the screen, press $2^{\text {nd }} \rightarrow$ CALC
b. Choose 5 :intersect
c. Place the cursor close to the intersection and press ENTER 3 times.

5. Answer all of the questions on the student worksheet.

