Piecewise Functions, Continuity, and Differentiability

by

Mary Ann Connors

Department of Mathematics
Westfield State College
Westfield, MA 01086

Textbook Correlation: Key Topic

- Pre-Requisites: Functions and Equations
- Derivatives
- Limits and Continuity

NCTM Principles and Standards:

- Process Standard
- Representation
- Connections

Exercises:

1. Consider the function given by $f(x)=\left\{\begin{array}{l}x^{2}, x \leq 1, \\ 1 / x, x>1\end{array}\right.$.

Graph f and its derivative, f^{\prime}.

Solution:

Reproduce the following screens on your TI-89.

On the home screen use the when and $\mathbf{S T O}>$ commands for the first condition of the piecewise function and store it in $y 1(\mathrm{x})$. Find the derivative of $y 1$ and store it in $y 2(\mathrm{x})$. Note: Nested when commands define the three-part rule for the derivative.
This derivative could also be entered as:
Define $\mathbf{y 2}(\mathbf{x})=$ when $\left(\mathbf{x}<1,2 x\right.$, when $\left(\left(x>1,-1 / \mathbf{x}^{\wedge} 2\right.\right.$, undef $\left.)\right)$.

Another method to define $y 1$ and $y 2$ is portrayed below in the $\mathrm{Y}=$ editor.

Since different graphing styles are allowed for each function, use the dot style for the graph of the derivative function with jump discontinuity and thick for the graph of $y 1$.

2. Is $y 1$ continuous at $x=1$?

Answer: Since $y 1(1)=1$ and $\lim _{x \rightarrow 1} y 1(x)=1, y 1$ is continuous at $x=1$.
3. Is $y 1$ differentiable at $x=1$?

Solution:

Use the graph of the original function to explore the question of differentiability at $x=1$. Draw the tangent lines at $x=.999$ and $x=1.001$ to visualize the approximate values of the left and right hand derivatives at $x=1$. Access the command by selecting F5 (Math), A: Tangent. Type in the x value where the tangent line is to be drawn. Notice its equation in the bottom left hand corner of the screen. Look at the TABLE.

Alternatively, zoom in three times at the point $(1,1)$ and notice that a corner appears. This illustrates that the function is not locally linear, or differentiable, at $x=1$.

Additional Exercise:

Consider the function given by $f(x)=|x|$. Graph f and its derivative, f^{\prime}.
Is f continuous at $x=0$? Is f differentiable at $x=0$?

