Objectives

- Given a function, state and explain the limit at a particular value
- Given a graph, state and explain the limit at a particular value

Activity 2

Materials

- TI-84 Plus / TI-83 Plus

Is There a Limit to Which Side You Can Take?

Introduction

The limit describes the behavior of a function near a point. It represents how function outputs behave as inputs get very close to a value of interest. In some cases, the value of a limit depends on from which side the input value is approached. In this activity, you will investigate the idea of one-sided limits both graphically and numerically.

Exploration

1. Enter this piecewise function into your graphing handheld:

$$
f(x)=\left\{\begin{array}{l}
x-3, x<2 \\
x+1, x>2
\end{array}\right.
$$

2. Set up your table as shown.

3. Using your knowledge of piecewise functions and the table output, record the function values for $x=\{1,2,3\}$.
4. Take a closer look at what happens as the input gets closer to 2 . In other words, look at $\lim _{x \rightarrow 2} f(x)$.

Change the table to start at 1.7 and increment the table by 0.1. In the table at the right, record the values of $f(x)$ for the following inputs:

$x=\{1.7,1.8,1.9,2,2.1,2.2,2.3\}$
5. Change the table to start at 1.97, and increment by 0.01 . Record the values of $f(x)$ in the table shown.

6. From your knowledge of limits, what is $\lim _{x \rightarrow 2} f(x)$? Explain.
7. The notation $\lim _{x \rightarrow 2^{+}} f(x)$ means to investigate the limit of the function $f(x)$ as x approaches 2 through values that are greater than 2 (from the right). In this case, you would be looking at what happens as the input value gets very near 2 from values higher than 2 . Using input values $x=\{2.3,2.2,2.1,2\}$, what conclusion would you draw regarding $\lim _{x \rightarrow 2^{+}} f(x)$, and why?
8. Explain what the notation $\lim _{x \rightarrow 2^{-}} f(x)$ means.

Give some examples of useful input and a value for this limit, if any.
9. Confirm what you concluded by sketching the graph on the axes at the right, using the standard viewing window.

Imagine examining $\lim _{x \rightarrow 2^{+}} f(x)$ by "walking"
from the right along the proper branch of the graph toward the value $x=2$, and

WIFTIDW
KMin=-1日
$x \Gamma B \times=10$

Mir=-1昆
$\because \Gamma \mathrm{M}=1 \mathrm{E}$
YE. $1=1$
KrEs=1 examining $\lim _{x \rightarrow 2^{-}} f(x)$ by walking from
the left along the proper branch toward the input value $x=2$.

10. Use any zooming technique you prefer, keeping both branches visible and keeping $x=2$ toward the center of the window. Trace along each branch. What do you see as the result?
11. Graph the function

$$
g(x)=\left\{\begin{array}{c}
x+1, x>2 \\
5, x=2 \\
x-3, x<2
\end{array}\right.
$$

with the WINDOW settings shown. Sketch what you see.

12. What difference, if any, is there in $g(x)$ from $f(x)$?
13. Find the following limits, and explain your results:
$\lim _{x \rightarrow 2} g(x), \lim _{x \rightarrow 2^{+}} g(x), \lim _{x \rightarrow 2^{-}} g(x)$.
14. Graph the function

$$
h(x)=\left\{\begin{array}{c}
\frac{1}{(x+2)}, x<-1 \\
x^{2}+2,-1 \leq x<3 \\
-x+9, x \geq 3
\end{array}\right.
$$

in the viewing window given, and sketch what you see.

15. Find each limit, and explain how you arrived at your conclusion.
a. $\lim _{x \rightarrow-2} h(x)$
b. $\lim _{x \rightarrow-2^{+}} h(x)$
c. $\lim _{x \rightarrow-1} h(x)$
d. $\lim _{x \rightarrow-1^{-}} h(x)$
e. $\lim _{x \rightarrow 3} h(x)$
f. $\lim _{x \rightarrow 3^{+}} h(x)$
16. Estimate the limits from the given graph. Note: Each dot represents 1 unit.
Be sure to write what each limit is asking for and then estimate its value.
a. $\quad \lim _{x \rightarrow 5}$

b. $\quad \lim _{x \rightarrow 0}$
c. $\lim _{x \rightarrow 2^{-}}$
d. $\lim _{x \rightarrow-2^{+}}$
e. $\lim _{x \rightarrow-1^{+}}$

