

Name	
Class	

Problem 1 – Chord-Chord Product Theorem

Start the Cabri Jr. application by pressing pps and selecting **Cabri Jr**. Open the file *PRODUC1* by pressing y=, selecting **Open...** and selecting the file.

PRODUC1 shows circle *O* and two chords *AB* and *CD* that intersect at point *X*. The lengths *AX*, *BX*, *CX*, and *DX* are also given.

1. Move point *A* to four different points and collect the data in the table below and calculate the products $AX \cdot BX$ and $CX \cdot DX$.

Position	AX	BX	сх	DX	ΑΧ · ΒΧ	CX · DX
1						
2						
3						
4						

2. What do you notice about the products $AX \cdot BX$ and $CX \cdot DX$?

3. Summarize the relationship between the lengths of the segments of two chords if the two chords intersect in the interior of a circle.

Problem 2 – Secant-Secant Product Theorem

Open the file *PRODUC2*, which shows circle *O* and two chords *AB* and *CD* that intersect at point *X*. The lengths *AX*, *BX*, *CX*, and *DX* are also given.

4. Move point *A* to four different points and collect the data in the table below and calculate the products $AX \cdot BX$ and $CX \cdot DX$.

Position	AX	BX	сх	DX	ΑΧ · ΒΧ	CX · DX
1						
2						
3						
4						

5. What do you notice about the products $AX \cdot BX$ and $CX \cdot DX$?

6. Summarize the relationship between the lengths of the secant segments and their external segments if the two secant segments share the same endpoint outside of a circle.

Name	
Class	

Problem 3 – Secant-Tangent Product Theorem

Open the file *PRODUC3*, which shows circle *O* and two chords *AB* and *CD* that intersect at point *X*. The lengths *AX*, *CX*, and *DX* are also given.

7. Move point *A* to four different points and collect the data in the table below and calculate AX^2 and $CX \cdot DX$.

Position	AX	СХ	DX	AX ²	CX · DX
1					
2					
3					
4					

- **8.** What do you notice about the products AX^2 and $CX \cdot DX$?
- **9.** Summarize the relationship between the lengths of the secant segment, its external segment, and the tangent segment if the secant and tangent segments share the same endpoint outside of a circle.

Problem 4 – Application of Product Theorems

10. Find the value of *x*.

12. Find the value of x.

11. Find the value of *x*.

