\qquad
\qquad

Problem 1 - Investigating side lengths

Use page 1.2 to explore the following questions.
What is the relationship between c^{2} and $a^{2}+b^{2}$ when $\triangle A B C$ is a right triangle?

What is the relationship between c^{2} and $a^{2}+b^{2}$ when $\triangle A B C$ is an acute triangle?

What is the relationship between c^{2} and $a^{2}+b^{2}$ when $\triangle A B C$ is an obtuse triangle?

Use page 1.3 to determine whether a triangle with the given side lengths is acute, right, or obtuse.

1. 3 in., 7 in., 8 in.
2. $3 \mathrm{ft}, 5 \mathrm{ft}, 5 \mathrm{ft}$ \qquad
3. $8 \mathrm{~cm}, 15 \mathrm{~cm}, 17 \mathrm{~cm}$ \qquad
4. $7.9 \mathrm{~m}, 11.5 \mathrm{~m}, 15.4 \mathrm{~m}$ \qquad
5. 26.2 in., 36 in., 48.1 in. \qquad
Problem 2 - Using squares
Explain how the diagram on page 2.1 demonstrates the Pythagorean Theorem.

Problem 3 - Extension

Use the diagram on page 3.1 to prove the Pythagorean Theorem by substituting expressions into the following equation. Then simplify each side.

$$
A_{\text {outer square }}=A_{\text {four triangles }}+A_{\text {center square }}
$$

