Linear & Linear Relationships

Name: **Answers**

7 8 9 10 11 12

Question: 1

Determine the value of x that satisfies the equation: $\frac{3(x-3)}{2} + \frac{4(2x+5)}{5} = 25 - 2x$

$$\frac{15(x-3) + 8(2x+5)}{10} = 25 - 2x$$

31x-5=250-20x Students may also use the solve command on the calculator.

$$51x = 255$$

$$x = 5$$

Question: 2

The region shown could be represented by:

- a) $[-2, \infty]$
- b) (-2, ∞)
- c) $[-2, \infty)$
- (-2, ∞]
- None of these

Question: 3

In simplest terms, the difference between two consecutive perfect squares could be written as:

a)
$$y^2 - x^2$$

- 2x+1
- $x^{2}-1$
- $3x^2$
- 1

Question: 4

10x + 3y + z = 12, 8x - 4y - z = 20 and 13x + 5y + z = 26 intersect when:

$$x = -2$$

$$x = 2$$

$$x = 0$$

$$y = -10$$

$$x = 10$$

a)
$$y = -4$$

$$y=4$$

$$y=0$$

$$x = -2$$
 $x = 2$ $x = 0$ $x = -10$ a) $y = -4$ b) $y = 4$ c) $y = 0$ d) $y = -3$

e)
$$y = 3$$

$$z = 20$$

$$z = -20$$

$$z = 0$$

$$z = -1$$

$$z = 1$$

Question: 5

A straight line with gradient 2 passing through the point (2, 7) could be written as:

a)
$$y = 2x + 7$$

b)
$$y = 7x + 2$$

$$c) 2x + y = 7$$

d)
$$2x - y = 7$$

e)
$$4x-2y+6=0$$

Question: 6

When the equations: ax + 2y = b and 3x - by = a do not have a unique solution, the relationship between a and b can be expressed as:

a)
$$a = 6$$
$$b = -6$$

b)
$$a=3$$

 $b=2$

c)
$$ab = -6$$
 d) $ab \ne -6$ e) $ab < 6$

e)
$$ab < 6$$

Question: 7

The points (2, 3), (5, 7) and (11, b) are collinear. The value of b is therefore:

e) None of these

Question: 8

The line y = 2x - 5 is perpendicular to:

a)
$$y = -2x - 5$$

b)
$$v = 2x + 5$$

a)
$$y = -2x-5$$
 b) $y = 2x+5$ c) $x+2y-8=0$ d) $x-2y+5=0$ e) $x-2y-5=0$

$$x-2y+5=0$$

e)
$$x-2y-5=0$$

Question: 9

Determine the distance between the points: (3, 7) and (15, 12)

distance =
$$\sqrt{(15-3)^2 + (12-7)^2}$$

= $\sqrt{144+25}$
= 13

Question: 10

The centre of a circle is located at the point (5, 7). The point (7, 4) lies on the circle. Determine the area of the circle:

radius =
$$\sqrt{(7-5)^2 + (4-7)^2}$$

= $\sqrt{13}$

Area = 13π