Transformational Geometry Summary and Review TEACHER NOTES AND SOLUTIONS

In this lesson, you will be given the opportunity to summarize, review, explore and extend ideas about each of the four transformations: reflections, translations, rotations, dilations.

Use a straightedge to make sketches in the grid supplied.

1. Reflect $\triangle D E F$ about the y-axis. Then fill in the blanks with appropriate responses.

a. If $m \angle F=70^{\circ}$, then $m \angle F^{\prime}=70^{\circ}$
b. if the slope of $\overline{D E}=\frac{6}{7}$, then the slope of $\overline{\overline{D^{\prime} E^{\prime}}=-\frac{6}{7}}$
c. If the coordinates of E are $(6,4)$, then the coordinates of E^{\prime} are $(-6,4)$
d. If the area of $\triangle D E F$ is 24 sq cm , then the area of $\triangle D^{\prime} E^{\prime} F^{\prime}$ is 24 sq cm
e. If the coordinates of a point H on $\triangle D E F$ are (x, y), then the coordinates of H^{\prime} are $\underline{\underline{(-x, y)}}$
2. Reflect $\triangle A B C$ about the x -axis. Then fill in the blanks with appropriate responses.

a. If $m \angle A=35^{\circ}$, then $m \angle A^{\prime}=35^{\circ}$
b. If $B C=8 \mathrm{~cm}$, then $B^{\prime} C^{\prime}=8 \mathrm{~cm}$
c. If the slope of $\overline{B C}=-\frac{2}{7}$, then the slope of $\overline{\overline{B^{\prime} C^{\prime}}=\frac{2}{7}}$
d. If the perimeter of $\triangle A B C=17 \mathrm{in}$, then the perimeter of $\triangle A^{\prime} B^{\prime} C^{\prime}=17 \mathrm{in}$
e. If the coordinates of a point G on $\triangle A B C$ are (x, y), then the coordinates of G ' are $\underline{\underline{(x,-y)}}$
f. If the coordinates of a point H^{\prime} on $\Delta A^{\prime} B^{\prime} C^{\prime}$ are $\left(3,-1 \frac{1}{2}\right)$,
then the coordinates of H are $\underline{\underline{\left(3,1 \frac{1}{2}\right)}}$

Transformational Geometry Summary and Review TEACHER NOTES AND SOLUTIONS

3. Reflect $\triangle M N O$ about the line $\mathrm{y}=3$. List the coordinates of each of the vertices:

$$
\begin{array}{ll}
M:(-6,5) & M^{\prime}:(-6,1) \\
\hline \hline N:(3,4) & N^{\prime}:(3,2) \\
\underline{O:(6,0)} & O^{\prime}:(6,6)
\end{array}
$$

4. Reflect $\triangle P Q R$ about the line $\mathrm{x}=-2$. List the coordinates of each of the vertices:

$$
P:(-3,-2) \quad P^{\prime}:(-1,-2)
$$

$\underline{\underline{Q:(-1,4) \quad Q^{\prime}:(-3,4)}}$
$\underline{\underline{R:(5,1) \quad R^{\prime}:(-9,1)}}$

5. Reflect $\Delta S T U$ about the line $\mathrm{y}=2 \mathrm{x}$. List the coordinates of each of the vertices:

$$
\underline{\underline{S:(-6,-2)} \quad S^{\prime}:(2,-6)}
$$

$\underline{\underline{T:(-4,7) \quad} \quad T^{\prime}:(8,1)}$
$\underline{\underline{U:(-1,3) \quad U^{\prime}:(3,1)}}$

Hint: the slope of the line $y=2 x$ is 2 . The slope of the connected segments, $\overline{S S^{\prime}}, \overline{U U^{\prime}}, \overline{T T^{\prime}}$, must each be $-\frac{1}{2}$ because they are perpendicular to the line $y=2 x$ (and parallel to each other).
6. Translate $\Delta G H I$ up 3 units and to the left 6 units. Then fill in the blanks with appropriate responses.

a. If $\mathrm{GH}=9 \mathrm{in}$, then $\underline{G}^{\prime} H^{\prime}=9$ in
b. If the perimeter of $\Delta G H I$ is 36 cm , then the perimeter of $\Delta G^{\prime} H^{\prime} I^{\prime}$ is 36 cm
c. If the slope of $\overline{H I}=\frac{5}{2}$, then the slope of $\overline{\overline{H^{\prime} I^{\prime}}=\frac{5}{2}}$
d. If the coordinates of H are $(6,-2)$, then the coordinates of H^{\prime} are $(0,1)$
e. If point A is on $\Delta G H I$ and its coordinates are $(3,-2)$, the coordinates of A^{\prime} are $(-3,1)$
f. If point Z^{\prime} is on $\Delta G^{\prime} H^{\prime} I^{\prime}$ and its coordinates are $(-2,2)$, the coordinates of $Z:(4,-1)$
g. If the coordinates of a point P on $\Delta G H I$ are (x, y), then the coordinates of P^{\prime} are $\underline{\underline{(x-6, y+3)}}$
h. Name three sets of parallel segments and list the slope of each:

$\overline{G H} \square \overline{G^{\prime} H^{\prime}}$	slope is $\frac{1}{2}$
$\overline{H I} \square \overline{H^{\prime} I^{\prime}}$	slope is $\frac{5}{2}$
$\overline{\overline{G I} \square \overline{G^{\prime} I^{\prime}}}$	slope is 1

7. Translate $\triangle D E F$ by vector $\overrightarrow{P Q}$.

a. What are the coordinates of $\underline{\underline{D^{\prime}:(0,-1)}} \quad \underline{\underline{E^{\prime}:(2,4)}} \quad \underline{\underline{F^{\prime}:(9,2)}}$
b. If point A^{\prime} is on $\Delta D^{\prime} E^{\prime} F^{\prime}$ and has coordinates $(6,1)$, the coordinates of $A ?(1,-1)$
c. What segments are parallel to vector $\overrightarrow{P Q}$? $\overline{D D^{\prime}} \square \overline{E E^{\prime}} \square \overline{F F^{\prime}} \square \overrightarrow{P Q}$

What is the slope of each of those segments? $\underline{\underline{\frac{2}{5}}}$
d. Name three other pairs of segments that are also parallel and state their slopes:

$\overline{D E} \square \overline{D^{\prime} E^{\prime}}$
$\overline{\text { slope }}$ is $\frac{5}{2}$
$\overline{E F} \square \overline{E^{\prime} F^{\prime}}$
$\overline{\overline{D F} \square \overline{D^{\prime} F^{\prime}}} \quad$ slope is $-\frac{2}{7}$

Transformational Geometry Summary and Review TEACHER NOTES AND SOLUTIONS

8. Given: $\triangle D E F$ is translated to the left 7 units and up 5 units.
a. If D has coordinates $(5,7)$, what are the coordinates for D^{\prime} ? $(-2,12)$
b. If E has coordinate $(-3,-7)$, what are the coordinates of E^{\prime} ? ($-10,-2$)
c. If F^{\prime} has coordinates $(1,6)$, what are the coordinates of F ?
$(8,1)$
d. If D has coordinates (x, y), what are the coordinates for D^{\prime} ?
$\underline{\underline{(x-7, y+5)}}$
e. If E^{\prime} has coordinates (p, q), what are the coordinates for E ?

$$
(p+7, q-5)
$$

9. Label the vertices of the images appropriately.
a. Rotate $\triangle D E F 90^{\circ}$ about point R. $\left(\Delta D^{\prime} E^{\prime} F^{\prime}\right)$
b. Rotate $\triangle D E F 180^{\circ}$ about point R. $\left(\Delta D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}\right)$
c. Rotate $\triangle D E F 270^{\circ}$ about point R. ($\left.\Delta D^{\prime \prime \prime} E^{\prime \prime \prime} F^{\prime \prime \prime}\right)$
d. Rotate $\triangle D E F 360^{\circ}$ about point R. $\left(\Delta D^{(4)} E^{(4)} F^{(4)}\right)$
e. If $m \angle D=35^{\circ}$, then $m \angle D^{\prime}=\underline{\underline{35^{\circ}}}$
f. If $E F=4.5$ in, then $E " F "=4.5$ in

g. If the slope of $\overline{E D}=-2$, then the slope of $\overline{E^{\prime} D^{\prime}}=\underline{\underline{\frac{1}{2}}}$
h. If the slope of $\overline{E F}=\frac{2}{3}$, then the slope of $\overline{E^{\prime \prime} F^{\prime \prime}}=\underline{\underline{\frac{2}{3}}}$
i. If the perimeter of $\triangle D E F$ is 8 in, then the perimeter of $\Delta D^{\prime \prime} E^{\prime \prime} F^{\prime \prime}$ is $\underline{\underline{8 i n}}$
j. If the coordinates of point D are (3, 2), what are the coordinates of:

Transformational Geometry Summary and Review TEACHER NOTES AND SOLUTIONS
$\underline{\underline{D^{\prime}:(2,-3)}}$
$\underline{\underline{D^{\prime \prime}:(-3,-2)}}$
$\underline{\underline{D^{\prime \prime \prime}:(-2,3)}}$
$\underline{\underline{D^{(4)}:(3,2)}}$
10. Label the vertices of the images appropriately.
a. Rotate $\triangle X Y Z 90^{\circ}$ about the origin.

$$
\begin{aligned}
m(\overline{X Y})= & \underline{\underline{\frac{2}{5}}} \\
m\left(\overline{X^{\prime} Y^{\prime}}\right)= & \underline{\underline{-\frac{5}{2}}} \\
& \underline{\underline{Y Z}}) \\
m\left(\overline{Y^{\prime} Z^{\prime}}\right)= & \underline{\underline{\frac{7}{1}}} \\
m(\overline{X Z})= & \underline{\underline{-\frac{3}{2}}}
\end{aligned} m\left(\overline{X^{\prime} Z^{\prime}}\right)=\underline{\underline{\frac{1}{3}}}
$$

Fill in the blanks with either \square ('is parallel to') or \perp (' is perpendicular to'):
$\underline{\underline{\overrightarrow{X Y} \perp \overrightarrow{X^{\prime} Y^{\prime}}} \quad \underline{\underline{Y Z} \perp \overrightarrow{Y^{\prime} Z^{\prime}}} \quad \underline{\underline{X Z} \perp \overrightarrow{X^{\prime} Z^{\prime}}}}$
11. Label the vertices of the images appropriately.
b. Rotate $\triangle X Y Z 180^{\circ}$ about the origin.

$$
\begin{aligned}
& m(\overline{X Y})= \underline{\underline{\frac{2}{5}}} \\
& m\left(\overline{X^{\prime} Y^{\prime}}\right)=\underline{\underline{\frac{2}{5}}} \\
& m(\overline{Y Z})= \underline{\underline{-\frac{1}{7}}} \quad m\left(\overline{Y^{\prime} Z^{\prime}}\right)=-\frac{1}{7}
\end{aligned}
$$

$$
m(\overline{X Z})=\underline{\underline{-\frac{3}{2}}} \quad m\left(\overline{X^{\prime} Z^{\prime}}\right)=\underline{\underline{-\frac{3}{2}}}
$$

Fill in the blanks with either \square ('is parallel to') or \perp (' is perpendicular to'):

Transformational Geometry Summary and Review TEACHER NOTES AND SOLUTIONS
$\underline{\underline{\overline{X Y}} \square \overrightarrow{X^{\prime \prime} Y^{\prime \prime}}} \quad \underline{\underline{Y Z} \square \overleftarrow{Y^{\prime \prime} Z^{\prime}}} \quad \underline{\underline{X Z} \square \overrightarrow{X^{\prime \prime} Z^{\prime}}}$
12.a. The corresponding sides of rotated triangles are congruent, that is have the same length.
b. The corresponding angles of rotated triangles are congruent, that is, have the same measure.
13. If a triangle is rotated about a point through x°, the corresponding angles and the corresponding
sides of the pre-image and image triangles are congruent and the triangles are congruent.

Therefore, a rotation is a rigid motion or an isometry.
We also say that a rotation is a distance-preserving and an angle-preserving transformation.
14. All of the questions in this exercise refer to the dilation that you will do below.

Dilate $\triangle X Y Z$ about point A with a scale factor of 3 .

a. If $m \angle X=20^{\circ}$, then $m \angle X^{\prime}=20^{\circ}$
b. If $Y Z=8 \mathrm{~cm}$, then $Y^{\prime} Z^{\prime}=24 \mathrm{~cm}$
c. If $X^{\prime} Z^{\prime}=30$ in, then $X Z=\underline{\underline{10} \text { in }}$
d. If the perimeter of $\triangle X Y Z$ is 60 cm , then the perimeter of $\Delta X^{\prime} Y^{\prime} Z^{\prime}=180 \mathrm{~cm}$
e. Calculate the following ratios. Write your answers as fractions.

1. $\frac{\operatorname{perimeter}\left(\Delta X^{\prime} Y^{\prime} Z^{\prime}\right)}{\text { perimeter }(\Delta X Y Z)}=\underline{\underline{\frac{3}{\text { or }} 3}}$
2. $\frac{\operatorname{area}\left(\Delta X^{\prime} Y^{\prime} Z^{\prime}\right)}{\operatorname{area}(\triangle X Y Z)}=\underline{\underline{\frac{9}{1} \text { or } 9}}$
3. $\frac{\text { perimeter }(\triangle X Y Z)}{\text { perimeter }\left(\Delta X^{\prime} Y^{\prime} Z^{\prime}\right)}=\frac{1}{\underline{3}}$
f. If the area of $\triangle X Y Z=72 \mathrm{in}^{2}$, then the area of $\Delta X^{\prime} Y^{\prime} Z^{\prime}=648 \mathrm{in}^{2}$
g. What is true about the segments $\overline{X Z}$ and $\overline{X^{\prime} Z^{\prime}}$? Parallel
h. The slope of $\overline{X Y}$ is $-\frac{3}{4}$. List another segment and its slope. slope of $\overline{X^{\prime} Y^{\prime}}$ is $-\frac{3}{4}$
i. If $A X=10 \mathrm{~cm}$, then $A X^{\prime}=30 \mathrm{~cm}$ and $X X^{\prime}=20 \mathrm{~cm}$
$\mathrm{j}-\mathrm{o}$. Calculate the ratios. Write your answers as fractions.
j. $\frac{A X^{\prime}}{A X}=\underline{\underline{\frac{3}{1} \text { or } 3}}$
k. $\frac{A Y}{A Y^{\prime}}=\underline{\underline{\frac{1}{3}}}$
l. $\frac{X Z}{X^{\prime} Z^{\prime}}=\underline{\underline{\frac{1}{3}}}$
m. $\frac{\text { area }(\Delta X Y Z)}{\text { area }\left(\Delta X^{\prime} Y^{\prime} Z^{\prime}\right)}=\underline{\underline{\frac{1}{9}}}$
n. $\frac{m \angle X}{m \angle X^{\prime}}=\underline{\underline{\frac{1}{1} \text { or } 1}}$
o. $\frac{m \angle Z^{\prime}}{m \angle Z}=\underline{\underline{\frac{1}{1} \text { or } 1}}$
p. If point A is at the origin, answer the following questions.
4. If the coordinates of X are $(6,-12)$, then the coordinates of X ' are $(18,-36)$
5. If the coordinates of Z^{\prime} are $(6,-12)$, then the coordinates of Z are $\underline{\underline{(2,-4)}}$
6. If the coordinates of Y are $(-7,11)$, then the coordinates of Y^{\prime} are $\underline{\underline{(-21,33)}}$
7. If the coordinates of X^{\prime} are $(-18,24)$, then the coordinates of X are $(-6,8)$
q. If point A were to coincide with point X :
8. Which pairs of sides will overlap? $\overline{X Y}$ and $\overline{X^{\prime} Y^{\prime}} \quad \overline{X Z}$ and $\overline{X^{\prime} Z^{\prime}}$
9. What is the other pair of sides and what is true about these sides? $\overline{Y Z} \square \overline{Y^{\prime} Z^{\prime}}$
10. In each of the following grids, a triangle was transformed.

State which transformation was done: dilation, reflection, rotation, translation.
And describe what was done: how many units, which direction, about what angle, ...
a. pre-image $\triangle P Q R$; image $\triangle P^{\prime} Q^{\prime} R^{\prime}$

Rotate $\triangle P Q R \quad 270^{\circ}$ about the origin.
or Rotate $\triangle P Q R-90^{\circ}$ about the origin.
b. pre-image $\triangle A B C$; image $\triangle A^{\prime} B^{\prime} C^{\prime}$

Translate $\triangle A B C$ down 6 units.
c. pre-image $\Delta X Y Z$; image $\Delta X^{\prime} Y^{\prime} Z^{\prime}$

Dilate $\triangle X Y Z$ about the origin with a Scale
Factor of $\frac{1}{2}$.
e. pre-image $\Delta S T U$;image $\Delta S^{\prime} T^{\prime} U^{\prime}$

Translate $\Delta S T U 10$ units right and down 4 units
g. pre-image $\triangle P Q R ;$ image $\triangle P^{\prime} Q^{\prime} R^{\prime}$

Rotate $\triangle P Q R 180^{\circ}$ about the origin.
d. pre-image $\Delta B C D$; image $\Delta B^{\prime} C^{\prime} D^{\prime}$

Reflect $\Delta B C D$ about the line $\mathrm{y}=\mathrm{x}$.
f. pre-image $\triangle A B C$; image $\triangle A^{\prime} B^{\prime} C^{\prime}$

Reflect $\triangle A B C$ about the x -axis.
h. pre-image $\triangle C D E ;$ image $\Delta C^{\prime} D^{\prime} E^{\prime}$

Dilate $\triangle C D E$ about the origin with a Scale Factor of 2.

