Properties of Trapezoids

and Isosceles Trapezoids
ID: 9084

Time required

25 minutes

Activity Overview

A trapezoid is a quadrilateral where one pair of sides is parallel while the other two sides are not. In an isosceles trapezoid the non-parallel sides are congruent. In this activity we will attempt to create an isosceles trapezoid from an ordinary trapezoid, then approach the problem in a different manner and finally, examine the properties of trapezoids.

Topic: Quadrilaterals \& General Polygons

- Prove and apply theorems about the properties of rhombuses, kites and trapezoids.

Teacher Preparation and Notes

- This activity is designed to be used in a middle-school or high-school geometry classroom.
- This activity is intended to be mainly teacher-led, with breaks for individual student work. Use the following pages to present the material to the class and encourage discussion. Students will follow along using their graphing calculators.
- For this activity, students should know the definitions of a trapezoid and isosceles trapezoid. If they do not already know these terms, you can define them as they appear in the lesson, but allow extra time to do so.
- To download the student worksheet, go to education.ti.com/exchange and enter " 9084 " in the keyword search box.

Associated Materials

- PropTrapezoids_Student.doc

Suggested Related Activities

To download any activity listed, go to education.ti.com/exchange and enter the number in the keyword search box.

- Rhombi, Kites, and Trapezoids (TI-84 Plus family) - 12093
- Creating a Parallelogram (TI-Nspire technology) - 11987

To begin, students should start with a blank Cabri Jr. document. They should construct $\overline{A B}$ and a point C above the segment.

Create a line through C that is parallel to $\overline{A B}$. Construct a point on the new line and label it D.

Hide the parallel line and complete the trapezoid. Measure the interior angles. Base angles at C and D are not congruent, but they can be. Will they ever be? Base angles at A and B will be congruent if angles C and D are congruent. The lengths of the diagonals $\overline{A D}$ and $\overline{B C}$ would be congruent if C and D are congruent.

To verify that the lines are parallel, students construct lines through C and D that are perpendicular to $\overline{A B}$.

Then construct the points of intersection of the new lines with $\overline{A B}$. Construct lines segments to connect C and D to the line through $\overline{A B}$ and measure the lengths of these segments. These segments should always be equal because side $A B$ is parallel to side $C D$.

Label the new points on $\overline{A B}$ as E and F and measure the lenghts of $\overline{A C}$ and $\overline{B D}$. Line segments $A C$ and $B D$ will be congruent when base angles C and D are congruent.

Try to drag point C or point D to make $A C=B D$. Due to the screen resolution, this can be very difficult. Construct $\overline{A E}$ and $\overline{B F}$. For an isosceles trapezoid, these segments should also be congruent because triangles $A E C$ and $B F D$ are congruent due to the side-angle-side property.

In order to construct an isosceles trapezoid, start with a line segment, $A B$. Construct the midpoint, M, and another point, P, on $\overline{A B}$. Construct a line through the M that is perpendicular to $\overline{A B}$.

Press TRACE and select the Reflection option. Click on the perpendicular line through M and then point P.

A new point will appear on the line segment on the right side. Label this point Q.

Construct perpendicular lines through P and Q. Construct point C on the perpendicular through P.

Construct a perpendicular to $\overline{A B}$ through point Q and a line through C that is parallel to $\overline{A B}$. Construct point D at the intersection of these two lines.

Hide the parallel and perpendicular lines and points M, P and Q. Complete the trapezoid and measure $\overline{A C}$ and $\overline{B D}$. In an isosceles trapezoid, the diagonals are congruent and the adjacent base angles are congruent.

Measure the base angles-the interior angles at A, B, C
 and D. Angles C and D are congruent and angles A and B are congruent.

Construct and measure the lengths of the two diagonals $\overline{A D}$ and $\overline{B C}$. They are congruent because the sets of base angles are also congruent.
Drag point C and watch the angles and sides. All of the above properties are preserved.

However, one property that is common to all trapezoids is that the line segment connecting the non-parallel sides is also parallel to these sides and its length is half the sum of the parallel sides. Construct a trapezoid $A B C D$. Construct the midpoints at E and F and construct $\overline{E F}$.

Measure the lengths of $\overline{C D}, \overline{E F}$ and $\overline{A B}$. You could prove that $\overline{E F}$ is parallel to $\overline{C D}$ and $\overline{A B}$ by calculating

Use the Calculate tool to find the sum of the lengths of $\overline{C D}$ and $\overline{A B}$.

Place the number "2" on the screen and divide the sum by 2 using the calculate tool. This result always equal the length of $\overline{E F}$.

