
Slope Fields and Euler’s Method for AP Calculus

Dennis Pence
Western Michigan University
Kalamazoo, Michigan 49008

dennis.pence@wmich.edu

Introduction

Numerical methods such as Euler’s method and visualizations such as slope fields are
now a part of the AP Calculus syllabus. Both of these topics have been in the BC Course
since 1998, and it has been announced that slope fields will be added to the AB Course in
2003 <http://www.collegeboard.org/ap/calculus/index.html>. Graphing calculators
make these topics easy to implement and fun to study.

First Order Differential Equations

Soon after a calculus class learns about the derivative, the instructor can introduce the
concept of a first order differential equation.

()ytf
dt
dy

,=

Here we use the independent variable t for two reasons. First, many applications from
physics and engineering have time as the independent variable. Second, when we move
to a system of two first order equations, x and y, we will plot (x(t), y(t)) as parametric
equations. In the TI graphing calculators with a differential equations graphing mode
(now TI-85, TI-86, TI-89, TI-92 Plus), the graphing variable is also t.

The general solution for a first order differential equation (if it exists) is usually a family
of functions. Here are some examples using DIFF EQUATIONS graphing on a TI-89.

Ctyt
dt
dy

+=⇒= 3
3
12 tCeyy

dt
dy 5.05.0 =⇒=

Presented with a candidate for a general solution (no matter how it was obtained), we can
easily check by differentiation and substitution into the equation.

A particular solution (from this family) is specified by, in addition, giving an initial
condition y(t0) = y0. If we have been able to solve for the exact family as in the examples
above, then we can substitute the initial condition into the formula for the family to
determine the arbitrary constant in the formula.

3
53

3
12 2)1(, +=⇒== tyyt

dt
dy

 teyyy
dt
dy 5.07.07.0)0(,5.0 =⇒==

When viewing a differential equation plot on a TI-89, or TI-92 Plus, the command F8 IC
allows you to move the cursor to a location in the viewing window (or to type the
location) to specify another initial condition interactively. On the TI-86, the command is
EXPLR with only the option to move the cursor.

Both slope fields and Euler’s method are generally based upon the idea that a tangent line
is a good approximation for the graph of the function near the point of tangency. Notice
we needed to move to FUNCTION graphing to get the solution and the tangent line in the
same plot (where the graphing variable is x rather than t).

Slope Fields

Usually the family of the general solution has a member going through every point in our
viewing window (or perhaps some subset of this region). We can compute the tangent
line for the particular member of the family passing through the point (a, s) without
knowing the formula for the particular solution.
)(say = to go through the desired point (a, s).

 () () () ,)(, safayafa
dt
dy

== to satisfy the differential equation.

A slope field (also called a direction field or a phase portrait) is the plot of a small line
segment of many tangent lines, each centered at a point in the viewing window.

After seeing how particular solutions “flow through” the slope field a few times, students
learn to sketch an approximate solution, given only the slope field.

Programming Slope Fields on the TI-83

Here are the steps for getting a “DRAWN” slope field on a TI-83. Similar steps work for
other TI graphing calculators with no built-in slope field formatting (including the TI-85).

The first step is to realize that you can put a formula into the Y= Editor with several
variables (or parameters) other than the graphing variable X. We show this on an
example with no elementary exact solution.

 ()ty
dt
dy

7.1sin −= Viewing Window: −0.5 ≤ t ≤ 7, −1 ≤ y ≤ 3

I like to use the function slot Y9 for the purpose of storing the differential equation.
Make sure to “deselect” this formula, because we do not want it to try to graph in the
usual way.

To “evaluate” this formula for certain values of Y and T, simply store the appropriate
values in Y and T and type Y9. [Note: if you leave this slot selected and try to graph you
will get an error message. The calculator treats all letters other than X as parameters. It
links to the memory locations to get the needed values for these parameters. However the
calculator itself uses the variable Y in plotting. When Y changes after plotting the first
point, the link is broken and the error message appears.]

The second step is to plan the grid of points where you desire to plot slope line segments.
In the figure below,

4

minmax
,

8
minmax YY

L
XX

K
−

=
−

=

We do not want the points to be on these grid line intersections, but rather centered in
these subrectangles. Thus we need to find the centers of each of these subrectangles. In
our example figure, this will be the following.

 4,,1,
2

min,8,,1,
2

min LL =+−==+−= jjL
L

YyiiK
K

Xx ji

Next we work out how to draw the line segments. Suppose that we have stored the
coordinates for one of the grid points in to T and Y. We evaluate Y9 and store this slope
in M. Ideally all of the line segments would be drawn the same length. This would
require either trigonometric function evaluations or complicated square roots that would
just be too slow. Our compromise it to require that the line segment stay in the small
dotted box in the figure below.

The absolute value for a slope going exactly to the corner of the dotted box will be L/K.
Thus when abs(M) ≤ L/K, determine the endpoints of our line segment by the
intersection of the tangent line with the vertical lines x = T − K/4 and x = T + K/4. When

abs(M) ≥ L/K, determine the endpoints of our line segment by the intersection of the
tangent line with the horizontal lines y = Y − L/4 and y = Y + L/4. The TI-83 program
below implements these ideas (for more grid points than in the simplified figures above).
Note that the draw command Line(also changes the coordinate variable Y. Thus we store
its value in Z before we issue this command, and then use Z instead.

TI-83 prgmSLOPE
FnOff B+I*K→T:D+J*L→Y
Xmin→A Y→Z
(Xmax-A)/16→K Y9→M
Ymin→C If abs(M)≤S:Then
(Ymax-C)/10→L Line(T-P,Z-MP,T+P,Z+MP)
A-K/2→B:C-L/2→D Else
L/K→S Line(T-Q/M,Z-Q,T+Q/M,Z+Q)
K/4→P:L/4→Q End
For(I,1,16,1) End
For(J,1,10,1) End

Running this program gives the following slope field for the differential equation we
have stored Y9 = sin(Y-1.7T) in the viewing window set. You can experiment with
the numbers 16 and 10 (each appears twice in the program) balancing how long you are
willing to wait for these line segments to be draw with resolution.

Euler’s Method for Numerical Solution

Many differential equations do not have an exact symbolic solution. Even some, that do
have an exact solution, have such a complicated formula that a numerical solution might
be more useful. We seek to approximate a solution y(t), t0 ≤ t ≤ tf to a first order
differential equation dy/dt = f(t, y) with initial conditions y(t0) = y0. We decide to accept
N values for approximations to y evaluated at equally spaced t-values. Let

 Niihtt
N

tt
h i

f ,,1,; 0
0 L=+=

−
= .

We know y(t0) by the given initial condition. We also know the slope of the line tangent
to y at the point (t0, y0) to be m0 = f(t0, y0) from the differential equation. This “first”
tangent line has equation
 ()000 ttmyy −=− .
We simply approximate y(t1) by evaluating the tangent line equation at t = t1. This gives

 ()),()(000010011 ytfhyttmyyty +=−+=≈ .
To get the next approximate value, 22)(yty ≈ , we simply use a “second” tangent line
originating at the point (t1, y1) in the slope field. Continuing to take repeated steps by h
on the t-interval, we get the recursive formula
 Nnytfhyyty nnnnn ,,1),,()(111 L=+=≈ −−− .

It is now common to study similar recursively defined sequences in many high school
texts. In the Core Plus Mathematics Project (from Western Michigan University), this is
called a “now-next” process. Such sequences can be evaluated in the home screen of a TI
graphing calculator. Consider () 20,5,5.0)0(,7.1sin/ ===−= Ntytydtdy f .

Once you get started (with the computation that gives y2 on the second screen above, you
simply need to press ENTER repeatedly to get the next approximations. You need to
write these down as you compute them, and you need to keep count to know which term
in the sequence is the next one.

A better way is to use the sequence graphing mode on the TI-83. We use one sequence u
to represent the t-values we desire and a second sequence v to represent the computed y-
approximations.

 Y= Editor, H=0.25 Table

 Graph FORMAT Dot Plot, Trace, u

 Thick Style Thick Plot, Trace, v Thick Plot, prgmSLOPE

Tip: If you try to plot a single sequence later with the Graph FORMAT still set to uv plot,
the error message: INVALID might not be enough information to tell you to change back
to a Time plot.

A third way to compute the Euler approximations is to do the computations in a program.
If we store the results in lists, we can get a nice plot by turning on a statistical plot. This
has two advantages over the sequence graphing. One is that we can stay in FUNCTION
graphing mode, where we can also plot an exact solution (if the differential equation has
one that we wish to compare to the numerical solution). A second advantage is that we
can to do error analysis with the lists (again assuming an exact solution).

The following TI-83 program stores the t-values in list L1 and the corresponding y-values
in L2. Then it turns on a statistical plot to display the graph of the computations. After
running this you can again run prgmSLOPE to have the “DRAWN” slope lines added to
the plot. (Since the line segments are drawn objects, they disappear whenever something
changes in the plot.)

TI-83 prgmEULER
Disp "ASSUMES F(T,Y)" T→L1(1):Y→L2(1)
Input "T0= ",T For(I,1,N,1)
Disp " IS IN Y9" Y9→M
Input "Y0= ",Y Y+H*M→Y:T+H→T
Input "TF= ",F T→L1(I+1):Y→L2(I+1)
Input "NO. OF STEPS= ",N End
(F-T)/N→H Plot1(xyLine,L1,L2,?)
N+1→dim(L1):N+1→dim(L2) DispGraph

Long ago when these computations were done by hand, there would be a great deal of
effort make to determine how small h needed to be to have some accuracy in the final
approximation)(fN tyy ≈ . Some calculus texts still place more emphasis on using the
error estimates for doing this than is probably deserved. Given how easy it is to re-do the
computations, we can simply try a few smaller values for h (or equivalently larger values
for N with tf fixed) to see the effects. More advanced methods than Euler’s method
incorporate internal computations within the algorithm to estimate the errors.

Euler’s Method and Better Methods Built-In to Other TI Calculators

The TI-85 did not have Euler’s method as an option. It simply did the numerical
computations with a better method. Unfortunately Euler’s method started to appear in
calculus texts, and instructors demanded that it be an option in the TI-86, which it is.
Certainly Euler’s method is the simplest numerical method for solving a first order
differential equation, making it nice for textbooks. Being so simple, it is not very
accurate or efficient. To have any reasonable accuracy, you need to take hundreds (often
thousands or millions) of steps. Thus when you select Euler’s method in the formatting
of differential equations on a TI-86, TI-89, or TI-92 PLus, the window editor then
includes the setting Estep near the bottom. If you choose Estep=5, then the calculator
will take five Euler steps before it plots again. For example, if you have 101 points
plotted (from t0 to tf in increments of tstep), the calculator will actually do 500 Euler
steps. While this improves accuracy a little (but takes a long time), far better is to choose
the other solution method.

My advice is to select the EULER solution method only when the assignment specifies
that Euler’s method must be used. Then set Estep=1 to be able to record all of the steps
for the assignment. When you trace, you will see all of the Euler steps computed. The
window setting tstep is actually h if the assignment specifies that quantity in the method.
If the assignment specifies the total number of steps N, then calculate tstep = h = (tmax −
tmin)/N = (tf − t0)/N.

At all other times, select the method labeled RK. The letters stand for Runge-Kutta, and
there are many methods of this type. The TI-89 Guidebook has more details in an

appendix if you wish to know more about the one implemented here. The RK solution
method used is much better than Euler’s method for several reasons. First, for any given
h step, the calculator uses a more complicated procedure to find a more accurate
approximation (using the ideas of both Runge and Kutta). Second, the algorithm also
computes a local error estimate for this approximation during each step. If the local error
estimate is too large (based upon the given tolerance), the algorithm will automatically
back up to use a smaller h value. If the local error estimate is too small (based upon the
tolerance), it will try a larger h on the next step. An algorithm that makes changes based
upon computed local error estimates is called adaptive. Overall, it tries to give
approximations that satisfy the tolerance you have given in the window editor as diftol.
The adaptive RK algorithm will work harder (and take longer) with a smaller setting of
diftol.

A final feature of this algorithm is the interpolation used to determine plotted points (or
any other evaluations). If the calculator just plotted the computed points of the adaptive
RK steps, the pattern of the points would be very irregular and unattractive (but accurate).
Instead, the algorithm fits a cubic polynomial between these points in the viewing
window (also matching the slopes at these points). It then evaluates the cubic at regular
tstep-intervals. Set diftol to something large (like 0.5) and you can see the effect of this
cubic interpolation. After a (large) RK step is computed by the algorithm, the grapher
will plot several points (from the same cubic piece) in a hurry. In the EULER solution
method, the plotted points will appear at regular time intervals because exactly the same
computation takes place between plotted points.

References

I would, of course, highly recommend the TI Explorations book Differential Equations
with the TI-86, by Ray Barton and Dennis Pence. The examples and activities there are
also appropriate for users with a TI-89 or TI-92 Plus (but the commands will be slightly
different to implement differential equation graphing). With the above TI-83 programs,
you can also do most of the activities on a TI-83. For more general information about
numerical mathematics (including Newton’s method, trapezoid rule, and Simpson’s rule,
and Euler’s method as well as more advanced methods), my favorite is Numerical
Mathematics and Computing, by Ward Cheney and David Kincaid (Brooks/Cole
Publishing Company). Cheney/Kincaid assume only knowledge of calculus.

