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Introduction 
 
Numerical methods such as Euler’s method and visualizations such as slope fields are 
now a part of the AP Calculus syllabus.  Both of these topics have been in the BC Course 
since 1998, and it has been announced that slope fields will be added to the AB Course in 
2003  <http://www.collegeboard.org/ap/calculus/index.html>.  Graphing calculators 
make these topics easy to implement and fun to study. 
 
First Order Differential Equations  
 
Soon after a calculus class learns about the derivative, the instructor can introduce the 
concept of a first order differential equation. 
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Here we use the independent variable t for two reasons.  First, many applications from 
physics and engineering have time as the independent variable.  Second, when we move 
to a system of two first order equations, x and y, we will plot (x(t), y(t)) as parametric 
equations.  In the TI graphing calculators with a differential equations graphing mode 
(now TI-85, TI-86, TI-89, TI-92 Plus), the graphing variable is also t. 
 
The general solution for a first order differential equation (if it exists) is usually a family 
of functions.  Here are some examples using DIFF EQUATIONS graphing on a TI-89. 
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Presented with a candidate for a general solution (no matter how it was obtained), we can 
easily check by differentiation and substitution into the equation.   
 
A particular solution (from this family) is specified by, in addition, giving an initial 
condition y(t0) = y0.  If we have been able to solve for the exact family as in the examples 
above, then we can substitute the initial condition into the formula for the family to 
determine the arbitrary constant in the formula. 
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When viewing a differential equation plot on a TI-89, or TI-92 Plus, the command F8 IC 
allows you to move the cursor to a location in the viewing window (or to type the 
location) to specify another initial condition interactively.  On the TI-86, the command is 
EXPLR with only the option to move the cursor. 
  
Both slope fields and Euler’s method are generally based upon the idea that a tangent line 
is a good approximation for the graph of the function near the point of tangency.  Notice 
we needed to move to FUNCTION graphing to get the solution and the tangent line in the 
same plot (where the graphing variable is x rather than t). 

   
 
Slope Fields  
 
Usually the family of the general solution has a member going through every point in our 
viewing window (or perhaps some subset of this region).  We can compute the tangent 
line for the particular member of the family passing through the point (a, s) without 
knowing the formula for the particular solution. 
  )( say =     to go through the desired point (a, s). 
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A slope field (also called a direction field or a phase portrait) is the plot of a small line 
segment of many tangent lines, each centered at a point in the viewing window. 

     
 
After seeing how particular solutions “flow through” the slope field a few times, students 
learn to sketch an approximate solution, given only the slope field. 
 
 



Programming Slope Fields on the TI-83 
 
Here are the steps for getting a “DRAWN” slope field on a TI-83.  Similar steps work for 
other TI graphing calculators with no built-in slope field formatting (including the TI-85). 
 
The first step is to realize that you can put a formula into the Y= Editor with several 
variables (or parameters) other than the graphing variable X.  We show this on an 
example with no elementary exact solution. 
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7.1sin −=  Viewing Window:  −0.5 ≤ t ≤ 7,  −1 ≤ y ≤ 3 

I like to use the function slot Y9 for the purpose of storing the differential equation.  
Make sure to “deselect” this formula, because we do not want it to try to graph in the 
usual way.  

   
To “evaluate” this formula for certain values of Y and T, simply store the appropriate 
values in Y and T and type Y9.  [Note: if you leave this slot selected and try to graph you 
will get an error message.  The calculator treats all letters other than X as parameters.  It 
links to the memory locations to get the needed values for these parameters.  However the 
calculator itself uses the variable Y in plotting.  When Y changes after plotting the first 
point, the link is broken and the error message appears.] 
 
The second step is to plan the grid of points where you desire to plot slope line segments.  
In the figure below,  
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We do not want the points to be on these grid line intersections, but rather centered in 
these subrectangles.  Thus we need to find the centers of each of these subrectangles.  In 
our example figure, this will be the following. 
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Next we work out how to draw the line segments.  Suppose that we have stored the 
coordinates for one of the grid points in to T and Y.  We evaluate Y9 and store this slope 
in M.  Ideally all of the line segments would be drawn the same length.  This would 
require either trigonometric function evaluations or complicated square roots that would 
just be too slow.  Our compromise it to require that the line segment stay in the small 
dotted box in the figure below.   

  
The absolute value for a slope going exactly to the corner of the dotted box will be L/K.  
Thus when  abs(M) ≤ L/K, determine the endpoints of our line segment by the 
intersection of the tangent line with the vertical lines  x = T − K/4 and x = T + K/4.  When 



abs(M) ≥ L/K, determine the endpoints of our line segment by the intersection of the 
tangent line with the horizontal lines  y = Y − L/4 and y = Y + L/4.  The TI-83 program 
below implements these ideas (for more grid points than in the simplified figures above).  
Note that the draw command Line( also changes the coordinate variable Y.  Thus we store 
its value in Z before we issue this command, and then use Z instead.  
 
TI-83 prgmSLOPE 
FnOff B+I*K→T:D+J*L→Y 
Xmin→A Y→Z 
(Xmax-A)/16→K Y9→M 
Ymin→C If abs(M)≤S:Then 
(Ymax-C)/10→L Line(T-P,Z-MP,T+P,Z+MP) 
A-K/2→B:C-L/2→D Else 
L/K→S Line(T-Q/M,Z-Q,T+Q/M,Z+Q) 
K/4→P:L/4→Q End 
For(I,1,16,1) End 
For(J,1,10,1) End 
 
Running this program gives the following slope field for the differential equation we 
have stored  Y9 = sin(Y-1.7T) in the viewing window set.  You can experiment with 
the numbers 16 and 10 (each appears twice in the program) balancing how long you are 
willing to wait for these line segments to be draw with resolution. 

 
 
Euler’s Method for Numerical Solution 
 
Many differential equations do not have an exact symbolic solution.  Even some, that do 
have an exact solution, have such a complicated formula that a numerical solution might 
be more useful.  We seek to approximate a solution y(t), t0 ≤ t ≤ tf  to a first order 
differential equation dy/dt = f(t, y) with initial conditions y(t0) =  y0.  We decide to accept 
N values for approximations to y evaluated at equally spaced t-values.  Let 
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We know y(t0) by the given initial condition.  We also know the slope of the line tangent 
to y at the point (t0, y0) to be m0 = f(t0, y0) from the differential equation.  This “first” 
tangent line has equation 
 ( )000 ttmyy −=− . 
We simply approximate y(t1) by evaluating the tangent line equation at t = t1.  This gives 



 ( ) ),()( 000010011 ytfhyttmyyty +=−+=≈ . 
To get the next approximate value, 22 )( yty ≈ , we simply use a “second” tangent line 
originating at the point (t1, y1) in the slope field.  Continuing to take repeated steps by h 
on the t-interval, we get the recursive formula 
 Nnytfhyyty nnnnn ,,1),,()( 111 L=+=≈ −−− . 
 
It is now common to study similar recursively defined sequences in many high school 
texts.  In the Core Plus Mathematics Project (from Western Michigan University), this is 
called a “now-next” process.  Such sequences can be evaluated in the home screen of a TI 
graphing calculator.  Consider ( ) 20,5,5.0)0(,7.1sin/ ===−= Ntytydtdy f . 
    

        

        
    

Once you get started (with the computation that gives y2 on the second screen above, you 
simply need to press ENTER repeatedly to get the next approximations.  You need to 
write these down as you compute them, and you need to keep count to know which term 
in the sequence is the next one. 
 
A better way is to use the sequence graphing mode on the TI-83.  We use one sequence u  
to represent the t-values we desire and a second sequence v to represent the computed y-
approximations. 
 

        
    Y= Editor, H=0.25                 Table 

        
               Graph FORMAT  Dot Plot, Trace, u 



       
         Thick Style        Thick Plot, Trace, v      Thick Plot, prgmSLOPE 
 
Tip: If you try to plot a single sequence later with the Graph FORMAT still set to uv plot, 
the error message: INVALID might not be enough information to tell you to change back 
to a Time plot. 
 
A third way to compute the Euler approximations is to do the computations in a program.  
If we store the results in lists, we can get a nice plot by turning on a statistical plot.  This 
has two advantages over the sequence graphing.  One is that we can stay in FUNCTION 
graphing mode, where we can also plot an exact solution (if the differential equation has 
one that we wish to compare to the numerical solution).  A second advantage is that we 
can to do error analysis with the lists (again assuming an exact solution). 
 
The following TI-83 program stores the t-values in list L1 and the corresponding y-values 
in L2.  Then it turns on a statistical plot to display the graph of the computations.  After 
running this you can again run prgmSLOPE to have the “DRAWN” slope lines added to 
the plot. (Since the line segments are drawn objects, they disappear whenever something 
changes in the plot.) 
 
TI-83 prgmEULER 
Disp "ASSUMES F(T,Y)" T→L1(1):Y→L2(1) 
Input "T0= ",T For(I,1,N,1) 
Disp " IS IN Y9" Y9→M 
Input "Y0= ",Y Y+H*M→Y:T+H→T 
Input "TF= ",F T→L1(I+1):Y→L2(I+1) 
Input "NO. OF STEPS= ",N End 
(F-T)/N→H Plot1(xyLine,L1,L2,?) 
N+1→dim(L1):N+1→dim(L2) DispGraph 
 

        

        



 
Long ago when these computations were done by hand, there would be a great deal of 
effort make to determine how small h needed to be to have some accuracy in the final 
approximation )( fN tyy ≈ .  Some calculus texts still place more emphasis on using the 
error estimates for doing this than is probably deserved.  Given how easy it is to re-do the 
computations, we can simply try a few smaller values for h (or equivalently larger values 
for N with tf fixed) to see the effects.  More advanced methods than Euler’s method 
incorporate internal computations within the algorithm to estimate the errors. 
 
Euler’s Method and Better Methods Built-In to Other TI Calculators  
 
The TI-85 did not have Euler’s method as an option.  It simply did the numerical 
computations with a better method.  Unfortunately Euler’s method started to appear in 
calculus texts, and instructors demanded that it be an option in the TI-86, which it is.  
Certainly Euler’s method is the simplest numerical method for solving a first order 
differential equation, making it nice for textbooks.  Being so simple, it is not very 
accurate or efficient.  To have any reasonable accuracy, you need to take hundreds (often 
thousands or millions) of steps.  Thus when you select Euler’s method in the formatting 
of differential equations on a TI-86, TI-89, or TI-92 PLus, the window editor then 
includes the setting Estep near the bottom.  If you choose Estep=5, then the calculator 
will take five Euler steps before it plots again.  For example, if you have 101 points 
plotted (from t0 to tf in increments of tstep), the calculator will actually do 500 Euler 
steps.  While this improves accuracy a little (but takes a long time), far better is to choose 
the other solution method. 
 

            

            
 
My advice is to select the EULER solution method only when the assignment specifies 
that Euler’s method must be used.  Then set Estep=1 to be able to record all of the steps 
for the assignment.  When you trace, you will see all of the Euler steps computed.  The 
window setting tstep is actually h if the assignment specifies that quantity in the method.  
If the assignment specifies the total number of steps N, then calculate tstep = h = (tmax − 
tmin)/N = (tf − t0)/N. 
 
At all other times, select the method labeled RK.  The letters stand for Runge-Kutta, and 
there are many methods of this type.  The TI-89 Guidebook has more details in an 



appendix if you wish to know more about the one implemented here.  The RK solution 
method used is much better than Euler’s method for several reasons.  First, for any given 
h step, the calculator uses a more complicated procedure to find a more accurate 
approximation (using the ideas of both Runge and Kutta).  Second, the algorithm also 
computes a local error estimate for this approximation during each step.  If the local error 
estimate is too large (based upon the given tolerance), the algorithm will automatically 
back up to use a smaller h value.  If the local error estimate is too small (based upon the 
tolerance), it will try a larger h on the next step.  An algorithm that makes changes based 
upon computed local error estimates is called adaptive.  Overall, it tries to give 
approximations that satisfy the tolerance you have given in the window editor as diftol.   
The adaptive RK algorithm will work harder (and take longer) with a smaller setting of 
diftol.   

             

       
 
A final feature of this algorithm is the interpolation used to determine plotted points (or 
any other evaluations).  If the calculator just plotted the computed points of the adaptive 
RK steps, the pattern of the points would be very irregular and unattractive (but accurate).  
Instead, the algorithm fits a cubic polynomial between these points in the viewing 
window (also matching the slopes at these points).  It then evaluates the cubic at regular 
tstep-intervals.  Set diftol to something large (like 0.5) and you can see the effect of this 
cubic interpolation. After a (large) RK step is computed by the algorithm, the grapher 
will plot several points (from the same cubic piece) in a hurry.  In the EULER solution 
method, the plotted points will appear at regular time intervals because exactly the same 
computation takes place between plotted points. 
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