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Introduction

Numerical methods such as Euler’s method and visudizations such as dopefidds are

now a part of the AP Calculus syllabus. Both of these topics have been in the BC Course
since 1998, and it has been announced that dope fields will be added to the AB Coursein
2003 <http://mww.collegeboard.org/ap/cal culus/index.html>. Graphing calculators
make these topics easy to implement and fun to study.

First Order Differential Equations

Soon after a caculus class learns about the derivative, the ingtructor can introduce the
conecept of afirst order differential equation.
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T =t(t.y)
Here we use the independent variablet for two reasons. Firgt, many applications from
physics and engineering have time as the independent variable. Second, when we move
to asystem of two first order equations, x and y, we will plat (x(t), y(t)) as parametric
equations. Inthe TI graphing caculators with a differentia equations graphing mode
(now TI-85, TI-86, TI-89, TI-92 Flus), the graphing variableisdso t.

The generd solution for afirg order differential equation (if it exists) isusudly afamily
of functions. Here are some examples using DIFF EQUATIONS graphing on a T1-89.
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Presented with a candidate for a genera solution (no matter how it was obtained), we can

eadlly check by differentiation and subgtitution into the equation.

A particular solution (from this family) is specified by, in addition, giving an initid

condition y(to) = yo. If we have been able to solve for the exact family asin the examples
above, then we can subgtitute the initia condition into the formulafor the family to
determine the arbitrary congtant in the formula.
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When viewing a differentid equation plot on aTI-89, or TI-92 Plus, the command F8 I1C
alows you to move the cursor to alocation in the viewing window (or to type the
location) to pecify another initid condition interactively. On the TI-86, the command is
EXPLR with only the option to move the cursor.

Both dope fields and Euler’ s method are generdly based upon the idea that a tangent line
isagood gpproximation for the graph of the function near the point of tangency. Notice
we needed to move to FUNCTION graphing to get the solution and the tangent line in the
same plot (where the graphing variable is x rather than t).
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Slope Fields

Usudly the family of the generd solution has amember going through every point in our
viewing window (or perhaps some subset of thisregion). We can compute the tangent
line for the particular member of the family passing through the point (a, s) without
knowing the formulafor the particular solution.

y(@)=s to go through the desired point (a, 9).

% (a)= f(a y(@))= f(as) to satisfy the differential equation.

A dopefidd (aso cdled adirection fidd or a phase portrait) is the plot of asmdl line
segment of many tangent lines, each centered a a point in the viewing window.
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After seeing how particular solutions “flow through” the dope fidd afew times, sudents
learn to sketch an approximeate solution, given only the dope fidd.



Programming Slope Fidds on the T1-83

Here are the steps for getting a“DRAWN” dopefild onaTI-83. Similar steps work for
other Tl graphing caculators with no built-in dope fidd formetting (including the TI-85).

Thefirst gep isto redize that you can put aformulainto the Y= Editor with severd
variables (or parameters) other than the graphing variable X. We show thison an
example with no dementary exact solution.
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| like to use the function dot Yy for the purpose of storing the differentia equation.
Make sureto “desdect” thisformula, because we do not want it to try to graph in the
usua way.
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To“evduate’ thisformulafor certain vduesof Y and T, smply store the appropriate
vauesin Yand T and type Yo. [Note: if you leave this dot sdlected and try to graph you
will get an error message. The cdculator treats dl letters other than X as parameters. It
links to the memory locations to get the needed vaues for these parameters. However the
cdculator itsdlf usesthe varigble Y in plotting. When Y changes &fter plotting the first
point, the link is broken and the error message appears.]

The second step isto plan the grid of points where you desire to plot dope line segments.
In the figure below,
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We do not want the points to be on these grid line intersections, but rather centered in
these subrectangles. Thuswe need to find the centers of each of these subrectangles. In
our example figure, thiswill be the following.
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Next we work out how to draw the line segments. Suppose that we have stored the
coordinates for one of the grid pointsinto T and Y. We evauate Yg and store this dope
inM. Idedly al of the line ssgments would be drawn the same length. Thiswould
require either trigonometric function evauations or complicated square roots that would
just betoo dow. Our compromiseit to require that the line segment stay in the small
dotted box in the figure below.
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The absolute value for a dope going exactly to the corner of the dotted box will be L/K.
Thuswhen abs(M) £ L/K, determine the endpoints of our line segment by the
intersection of the tangent linewith the verticd lines x =T - K/4and x =T + K/4. When



abs(M) 3 L/K, determine the endpoints of our line segment by the intersection of the
tangent line with the horizontd lines y=Y- L/4andy =Y+ L/4. TheTI-83 program
below implements these ideas (for more grid points than in the amplified figures above).
Note that the draw command Line( aso changes the coordinate variable Y. Thus we store
itsvaluein Z before we issue this command, and then use Z instead.

TI - 83 pr gnSLOPE

FnOf f B+l *K® T: D+J*L® Y

Xm n® A Y® Z

(Xmax- A)/ 16® K Yo® M
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For(1,1,16,1) End

For(J, 1,10, 1) End

Running this program gives the following dope field for the differentid equation we

have stored Yg=si n(Y-1. 7T) intheviewingwindow set. Y ou can experiment with
the numbers 16 and 10 (each appears twice in the program) balancing how long you are
willing to wait for these line segments to be draw with resolution.
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Euler’'sMethod for Numerical Solution

Many differential equations do not have an exact symbolic solution. Even some, that do
have an exact solution, have such a complicated formula that a numerica solution might
be more useful. We seek to agpproximate asolution y(t), to £t £ t; to afirst order
differential equation dy/dt = f(t, y) with initid conditionsy(to) = Yo. We decide to accept
N vauesfor gpproximationsto y evauated at equally spaced t-vaues. Let

-t

.t =t,+ihi=1-,N .

Weknow y(to) by the given initia condition. We aso know the dope of the line tangent
toy at the paint (to, Yo) to be mp = f(to, o) from the differentid equation. This“firg”
tangent line has equation

Y- Yo =M, (t' t0)'
We smply approximate y(t;) by evauating the tangent line equation a t = t;. Thisgives




y(t,)» y, =y, +m, (t1' to): Yo +hf(ty,Y,)-
To get the next approximate value, y(t,) » Yy, , wesmply usea“second”’ tangent line
origindting a the point (t1, y1) inthe dopefield. Continuing to take repeated steps by h
on thet-intervd, we get the recursgve formula

y(tn)» Yn =yn—l+hf(tn—l’yn—1)’ n:]-""1N'

It is now common to study similar recursvely defined sequencesin many high school

texts. In the Core Plus Mathematics Project (from Western Michigan University), thisis
cdled a“now-next” process. Such sequences can be evaluated in the home screen of a Tl
graphing calculator. Consider dy/ dt = sin(y- 1.7t), y(0) =0.5,t, =5, N = 20.
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Once you get garted (with the computation that gives y» on the second screen above, you
samply need to press ENTER repegatedly to get the next gpproximations. Y ou need to
write these down as you compute them, and you need to keep count to know which term
in the sequence is the next one.

A better way isto use the sequence graphing mode on the TI-83. We use one sequence u
to represent the t-values we desire and a second sequence v to represent the computed y-
gpproximations.
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Graph FORMAT Dot Plot, Trace, u
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Thick Syle

Thick Plot, Trace, v

Thick Plot, prgmSLOPE

Tip: If you try to plot a Sngle sequence later with the Grgph FORMAT 4l set to uv plot,
the error message: INVALID might not be enough information to tell you to change back

toaTime plot.

A third way to compute the Euler gpproximationsis to do the computationsin a program.
If we store the resultsin ligts, we can get anice plot by turning on adatistica plot. This
has two advantages over the sequence graphing. Oneisthat we can stay in FUNCTION

graphing mode, where we can dso plot an

exact solution (if the differential equation has

one that we wish to compare to the numerica solution). A second advantage is that we
can to do error andysiswith the lists (again assuming an exact solution).

Thefallowing TI-83 program stores the t-vaduesin lig L1 and the corresponding y-vaues
inL,. Thenit turnson agatidica plot to digplay the graph of the computations. After
running this you can again run prgmSLOPE to have the “DRAWN” dope lines added to
the plot. (Since the line segments are drawn objects, they disappear whenever something

changesin the plot.)
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Long ago when these computations were done by hand, there would be a grest dedl of
effort make to determine how smal h needed to be to have some accuracy in the final
aoproximation y,, » y(t,). Some caculustexts ill place more emphass on using the

error estimates for doing this than is probably deserved. Given how easy it isto re-do the
computations, we can smply try afew smdler vauesfor h (or equivadently larger values
for N with t; fixed) to see the effects. More advanced methods than Euler’ s method
incorporate internal computations within the agorithm to estimeate the errors.

Euler’'sMethod and Better Methods Built-In to Other T1 Calculators

The TI-85 did not have Euler’ s method as an option. It smply did the numerica
computations with a better method. Unfortunately Euler’s method started to appear in
caculustexts, and ingtructors demanded that it be an option in the TI-86, whichitis.
Certainly Euler’ s method is the smplest numerica method for solving afirst order
differentia equation, making it nice for textbooks. Being so smple, it isnot very

accurate or efficient. To have any reasonable accuracy, you need to take hundreds (often
thousands or millions) of seps. Thus when you sdect Euler’ s method in the formatting

of differentid equationson aTI-86, TI-89, or T1-92 PLus, the window editor then
includes the setting Estep near the bottom.  If you choose Estep=>5, then the calculator
will take five Euler steps beforeit plots again. For example, if you have 101 points
plotted (from to to t; in increments of tstep), the calculator will actudly do 500 Euler
geps. While thisimproves accuracy alittle (but takes along time), far better isto choose
the other solution method.
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My advice isto sdect the EULER solution method only when the assgnment specifies
that Euler' s method must be used. Then st Estep=1to be able to record dl of the steps
for the assgnment. When you trace, you will see al of the Euler steps computed. The
window setting tstepisactudly h if the assgnment specifies that quantity in the method.

If the assgnment specifies the total number of steps N, then cdculatetstep = h = (tmax -
tmin)/N = (t; - to)/N.

At dl other times, select the method labeled RK. The letters stand for Runge-Kutta, and
there are many methods of thistype. The TI-89 Guidebook has more detailsin an



gppendix if you wish to know more about the one implemented here. The RK solution
method used is much better than Euler’ s method for severd reasons. Firg, for any given
h step, the calculator uses a more complicated procedure to find a more accurate
gpproximation (using the ideas of both Runge and Kutta). Second, the dgorithm aso
computes alocd error estimate for this gpproximation during each step. If the loca error
edimate is too large (based upon the given tolerance), the dgorithm will automaticaly
back up to useasmdler h vaue. If theloca error estimate istoo smal (based upon the
tolerance), it will try alarger h on the next step. An dgorithm that makes changes based
upon computed loca error estimates is called adaptive. Overdl, it triesto give
approximations that satisfy the tolerance you have given in the window editor as diftal.
The adaptive RK dgorithm will work harder (and take longer) with asmaler setting of
diftal.
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A find feature of this dgorithm is the interpolation used to determine plotted points (or
any other evauations). If the caculator just plotted the computed points of the adaptive
RK steps, the pattern of the points would be very irregular and unattractive (but accurate).
Insteed, the agorithm fits a cubic polynomid between these pointsin the viewing

window (also matching the dopes at these points). It then evauates the cubic a regular
tstep-intervals. Set diftol to something large (like 0.5) and you can see the effect of this
cubic interpolation. After a(large) RK step is computed by the agorithm, the grapher

will plot severd points (from the same cubic piece) inahurry. Inthe EULER solution
method, the plotted points will appear a regular time intervas because exactly the same
computation takes place between plotted points.
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