

Name	
Class	

Problem 1 – Characteristics of the *t* Distribution

- 1.3: How does the *t* distribution for n = 5 (d.f. = 4) compare to the normal distribution?
- 1.4: What happens as *n* gets larger? Why?

Problem 2 – Comparing Areas

2.2: Use the **Integral** tool to find the areas bounded by (-3, 0) and (3, 0) on the x-axis.

Normal distribution: _____

t distribution: *n* = 6: _____ *n* = 11: _____

n = 14: _____ *n* = 24: _____

What happens as *n* changes? Why?

Problem 3 – Critical Values for a *t* Distribution

3.1: Use the **invt** command to find the critical values for a 95% confidence interval. (d.f. = n - 1)

$t_{\frac{\alpha}{2}}, n=5$	$t_{\frac{\alpha}{2}}, n = 10$	$t_{\frac{\alpha}{2}}, n = 15$	$t_{\frac{\alpha}{2}}, n=25$	$Z_{\frac{\alpha}{2}}$

If any, what patterns did you find?

4.1: Predict how the following critical values will compare. Then find the values.

50% CI,
$$t_{\frac{\alpha}{2}}$$
, $n = 4$ and $n = 28$

```
80% CI, t_{\frac{\alpha}{2}}, n = 4 and n = 28
```

100% CI, $t_{\frac{\alpha}{2}}$, n = 4 and n = 28

Problem 4 – Constructing a Confidence Interval

- 5.2: What is the mean and standard deviation of the weights (n = 10)?
- 5.4: For 90% and 95% confidence, what is the critical value, margin of error, and CI?
- 5.5: Add the new weights to the list on page 4.3: 97, 104, 92, 96, 100, 105, 103, 95, 92, 109. What is the new mean and standard deviation (n = 20)?
- 5.6: For 90% and 95% confidence, what is the critical value, margin of error, and CI?