Metallic Numbers

Student Activity

$$
\begin{array}{llllll}
7 & 8 & 9 & 10 & 11 & 12
\end{array}
$$

Introduction

The famous Fibonacci sequence $1,1,2,3,5,8 \ldots$ involves the recursive sequence definition: $t_{n+2}=t_{n}+t_{n+1}$. The ratio between consecutive terms for the Fibonacci sequence as $n \rightarrow \infty$ is known as the Golden Ratio.

$$
\text { Golden Ratio: } \lim _{n \rightarrow \infty} \frac{t_{n+1}}{t_{n}}=\phi
$$

In this investigation you will explore a small variation on the Fibonacci sequence: $t_{n+2}=t_{n}+a t_{n+1}$ where a is a natural number. In this investigation these variants on the Fibonacci sequence will be referred to as "Levels", for example Fibonacci Level 2 means that $a=2$ in the recursive definition above. The original Fibonacci sequence is therefore Fibonacci Level 1 with $a=1$.

Fibonacci Level 2: In search of the Silver Ratio

This sequence starts as: $1,1,3,7,17,41,99 \ldots$
Each successive term is equal to "the previous two terms plus another helping of the previous term." This can be expressed more succinctly using mathematical notation as:

$$
t_{n+2}=t_{n}+2 t_{n+1}
$$

The first two numbers can still be set as 1 and 1 .
Use either a recursive formula or an appropriate sequence command to generate the first 50 terms of the Fibonacci Level 2 sequence.

41	.1		Exploring S.ces ∇				
- ${ }^{\text {A }}$	A fib		c	$C \quad D$			
$=$							
1		1					
2		1					
3		2					
4		3					
5		5					
A1					4		,

Call the list: FIB2
Insert a Calculator Application in preparation for your exploration.
Question: 1.
Explore the ratio between consecutive Fibonacci Level 2 terms, this is called the 'Silver' ratio.
Note: Any term in the sequence can be recalled by typing: FIB2[\#] where \# represents the term number.

Calculator
 Tip!

Insert a Notes application and a slider called ' n '. Set the minimum value of the slider to 1 , the maximum to 50 with increments of ' 1 '. In a maths box type:

$$
\frac{\operatorname{Fib} 2[n+1]}{\text { Fib2[n] }}
$$

Adjust the slider to see how the ratio between consecutive terms changes.

Question: 2.

Change the first two terms in the Fibonacci Level 2 sequence and check to see if this changes the long term value of the ratio between consecutive terms.

Question: 3.

Let x represent any term in the sequence and y the next term.
a) Explain the two formulas below:

$$
r_{n}=\frac{y}{x} \text { and } \quad r_{n+1}=\frac{2 y+x}{y}
$$

b) Assuming the ratio between consecutive terms is approximately equal as $n \rightarrow \infty$ determine the value of the ratio.

Fibonacci Level 3: In search of the Bronze Ratio

The bronze ratio refers to the ratio between consecutive terms of the level 3 Fibonacci sequence. The general formula for the sequence $t_{n+2}=t_{n}+a t_{n+1}$ therefore becomes: $t_{n+2}=t_{n}+3 t_{n+1}$

Question: 4.
Create a new list in the spreadsheet application called Fib3, generate the first 50 terms of the level 3 sequence and explore the ratio between consecutive terms as n increases.

Question: 5.

Set up two formulas similar to those from Question 3 and hence determine the exact value for the bronze ratio.

Fibonacci Level n : The Metallic Ratios

The general term for the ratio between consecutive terms for $t_{n+2}=t_{n}+a t_{n+1}$ is referred to as a Metallic ratio.
Question: 6.
Determine an expression for the general form of the Metallic ratios. Check your answer using $a=1, a=2$ and $a=3$.

Question: 7.

For the golden ratio (ϕ) the following relationships hold:

$$
\phi=\frac{1}{\phi}+1 \quad \phi^{2}=\phi+1 \quad \phi^{1}+\phi^{2}=\phi^{3}
$$

Do any of the above relationships hold for the silver or bronze ratio?

Question: 8.

Calculate the approximate value for each of the following and comment on your finding as the quantity of 'embedded' fractions increases.
a) $1+\frac{1}{1+1}$
b) $1+\frac{1}{1+\frac{1}{1+1}}$
c) $1+\frac{1}{1+\frac{1}{1+\frac{1}{1+1}}}$
d) $1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+1}}}}$
e) $1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\ldots}}}}}$ (In this case add as many fractions as possible)

Question: 9.

Calculate the approximate value for the following 'embedded' fraction and comment on the result.

