Class _____

Problem 1 - Constant Integrand

Suppose you have the function y = 1.5 as seen at the right. How will the area under the curve change as we go from 0 to x? Find the area of the by evaluating the definite integral $\int_0^x 1.5 dt$.

For each value of x, you are looking at a rectangle with x for the length and 1.5 for the height.

X	$\int_0^x 1.5 dt$
1	
2	
3	
4	
5	

4. If you were to graph the ordered pairs $\left(x, \int_0^x 1.5 dt\right)$, what would the graph look like?

Use the **Stats/List Editor** to enter the data in the table above into *list1* and *list2*. Then plot the data.

6. If you changed the integrand from 1.5 to 0.5, what would the graph of
$$\left(x, \int_0^x 0.5 dt\right)$$
 look like?

Introduction to the Fundamental Theorem

Problem 2 - Non-Constant Integrand

Suppose you have the function $y = \frac{x}{2}$ as seen below. How will the area under the curve change as you go from 0 to x? Find the area of the triangle by hand or by evaluating the definite integral $\int_0^x \frac{t}{2} dt$.

7. Complete the table.

x	$\int_0^x \frac{t}{2} dt$
1	
2	
3	
4	
5	

8. If x = 0, what is $\int_0^x \frac{t}{2} dt$? Why?

9. Explain why, when *x* increases by 1, the value of $\int_0^x \frac{t}{2} dt$ does not increase by the same amount every time?

10. Is the graph of $\left(x, \int_0^x \frac{t}{2} dt\right)$ linear? Explain.

Introduction to the Fundamental Theorem

Problem 3 – An Integrand That Changes Sign

In the previous exercises, the function was positive over the interval. This time you are going to examine a function which changes sign, $y = \frac{x^2 - 13x + 22}{9}$. How will the area under the curve change as we go from 0 to x? Find the area of the by evaluating the definite integral $\int_0^x \frac{t^2 - 13t + 22}{9} dt$. Complete the table.

•0 9	
x	$\int_0^x \frac{t^2 - 13t + 22}{9} dt$
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	

11. At what value of *x* does the integral's value begin to decrease?

12. a. What are all the values of *x* for which the definite integral's value is decreasing?

b. What is true at these values of *x*?

Introduction to the Fundamental Theorem

- **13. a.** What are all the values of *x* for which the integral's value is increasing?
 - **b.** What is true of the integrand at these values of *x*?
- **14. a.** What is the smallest value of the integral, and at what value of *x* is this reached?
 - **b.** What happens with the integrand at this value of x?
- **15.** Is the connection between the location of the minimum value of $\int_0^x \frac{t^2 13t + 22}{9} dt$ and the sign change of the integrand from negative to positive one you that you have seen before? If so, in what context?