In this project, you will create a dart game that uses factoring to earn darts. The game will generate 4 random factor problems. If you answer correctly, you will earn a dart. Answer two questions in a row, earn an additional dart. After factoring 4 questions, toss your darts to earn a score. How high can you score? Answer all 4 questions correctly, earn 6 darts. Can you score a perfect 30 ?

Objectives:

Programming Objectives:

- Use the randint() function to generate random integers.
- Use for loops to repeat code.
- Use selection statements to make decisions.
- Use the draw functions from the TI-Draw library to create circles and text.
- Use the sleep function from the Time library to create animation.

Math Objectives:

- Practice solving quadratic equations
- Use the distance formula to find the distance between two points
- Use the modulus operator, \%, to find a remainder
- Use cosine and sine functions to draw circles.

Math Course Connections: This activity is recommended for Algebra 1 and Algebra 2.

You will create a dart game that generates four random quadratic expressions of the form: $x^{2}+b x+c$ or $a x^{2}+b x+c$. For each question the player answers correctly, the player will get another shot at the dart board. At the end of the game, the dartboard shows the darts on the board as well as the score the round.

Example:

Display Question 1

\ggg \# Shell Reinitialized
\ggg \# Running DRRTS
>> from DARTS import *
$x^{\wedge} 2-2 x-8$
$(x+n 1)(x+n 2)$
enter n1 |

Fns... |a A \#|Tools|Editor|Files

Ans 1 correct, display Q2

Ans 2 incorrect, display Q3

Ans 3 is correct,

enter $n 2 \quad 2$
$-4 x^{\wedge} 2-35 x-24$
$(a x+n 1)(x+n 2)$
enter a 4
enter $n 18$
enter $n 23$
sorry $a=-4 \quad n 1=-3 \quad n 28$
$-3 x^{\wedge} 2+2 x+1$
$(a x+n 1)(x+n 2)$
enter a \|
Fns...$\|$a A \#

Last answer is incorrect. Earn 3 darts, 2 correct questions. One bonus for two correct in a row.

1. The first step will be to create a python random simulation document.

Create a new python project named "darts".

Select "Random Simulation" from the types menu.

Allowed

- Up to 8 characters
- First character:A-Z
- Remaining characters:A-Z 0-9

EDITOR: DARTS
PROGRAM LINE 0001
Random Simulation
from random import *
from time import *
import ti_plotlib as plt
from math import 娄
from ti_system import *

Fns... 1 a A \#|Tools| Run \mid Files

```
EDITOR: DARTS
ProGRAM LINE 0007
# Random Simulation
from random import *
from time import *
import ti_plotlib as plt
from math import *
from ti_system import *
-
darts=0
bonus=0
```

| Fns... | a A \# | Tools | Run |
| :--- | :--- | :--- | :--- | Files

EDITOR: DARTS

PROGRAM LINE 0012

```
darts=0
```

bonus=0
for i in range(4):

-			
Fns...	a A Tools	Run	Files

5. Each question will either be an "easy" or "difficult" question. If you want to set the probability to 50% each question will be "easy", You need two choices. For that, use randint $(0,1)$. If the number is a 0 , generate an easy question, otherwise generate a "difficult" question. If you want more easy questions to appear, change the randint $(0,1)$ to something like randint $(0,3)$. That will generate numbers $0-3$. Now say if randint $(0,3)<3$ generate an "easy" question. That will make each question have a 75% probability of being an "easy" question.
```
# EDITOR: DARTS 
from math import 楽
from ti_system import *
darts=0
bonus=0
for i in range (4):
* if randint(0,1)==0:
* else:
\begin{tabular}{|l|l|l|l|}
\hline Fns... & a \(A\) Tools & Run & Files \\
\hline
\end{tabular}
```

Add an if..else statement with randint values of your choice.

$$
\text { if randint }(0,1)==0 \text { : }
$$

else:

Fns > Ctl > if..else
Fns $>$ Random $>$ randint
6. Compare your code to the one on the right.

Make sure your indentation is correct. Python uses indentation to keep loops and selection statements together. The lines under the for statement have one level of indentation (two diamond spaces). Each line that is part of the if statement is also indented one level (two diamond spaces).
7. In the first if statement, you will generate the "easy" questions in the form $x^{2}+b x+c$.

These questions will be factored in the form $(x+n 1)(x+n 2)$.

You could generate values for b and c and then try to break them apart into n 1 and n 2 . But, it is easier to generate n 1 and n 2 , then use them to find the values for b and c .

Why? You might ask.

The sum of $n 1$ and $n 2$ create the b value. The product of $n 1$ and $n 2$ create the c value.

TI-84 Plus CE Python Technology

8. Inside the if statement. Randomly generate n 1 and n 2 Use these numbers to create b and c.
$\mathrm{n} 1=$ randint(-10,10)
n2 = randint(-10,10)
$\mathrm{b}=\mathrm{n} 1+\mathrm{n} 2$
$\mathrm{c}=\mathrm{n} 1 * \mathrm{n} 2$
**Hint: The Tools menu, [zoom], contains copy/paste line commands. These could be useful when creating n2.
9. To display the function correctly is a bit tricky. For example, if the sum is -3 and the product is 10 , you want the display to be $x^{2}-3 x+10$. If we coded the project with disp $=$ " $x^{\wedge} 2$ " $+b+$ " $x+"+c$, it would display correctly for this problem.

However, if the values were $b=3$ and $c=-10$, the display code above would display: $x^{\wedge} 23 x+-10$.

Therefore, you will need an if statement.
all displays start with $x^{\wedge} 2$
if the sum is positive, add " + " and b and " x "
otherwise if the sum is negative,

```
) EDITOR: DARTS
PROGRAM LINE 001?
darts=0
bonus=0
for i in range(4):
if randint(0,1)==0:
*1=randint(-10,10)
#n2=randint(-10,10)
\cdotsb}=n1+n
* c=n1*n2
- else:
Fns... |a A \#|Tools| Run |Files
```

```
@) EDITOR: DARTS
    PROGRAM LINE 0015
**b=n1+n2
* c=n1粦2
....disp="x^2"
*..if b>0:
*....disp+="+"+str(b)+"x"
...elif b<0:
*** disp+=str(b)+"x"
\ldots..if c>0:
****disp+="+"+str(c)
*.*elif c<0:
*.... disp+=str(c)
* else:
FFns... (a A # Tools/ Run Files
```

Add the lines:

```
disp = "x^2"
if \(b>0\) :
        disp += "+" + str(b) + "x"
elif \(b<0\) :
    disp += \(\operatorname{str}(b)+\) " \(x "\)
if \(c>0\) :
    disp += "+" + str(c)
elif \(c<0\) :
    disp += \(\operatorname{str}(\mathrm{c})\)
```

Fns > Type > str

Hint: The [a A \#] menu might help with some of the typing.

Math Explorations with Python
 TI-84 Plus CE Python Technology

10. Now to display the question and the form of the input.
print(disp) will print the equation on the first line.
print(" $(x+n 1)(x+n 2)$ ") will tell the user the form of question input.

Add the lines:

```
print(disp)
print("(x+n1)(x+n2)")
```

Fns > I/O > print
11. Ask the user for the values, n 1 and n 2 .

Store these values in variables named un1 and un2.

$$
\begin{aligned}
& \text { un1 = int(input("enter n1 ")) } \\
& \text { un2 = int(input("enter n2 ")) }
\end{aligned}
$$

Fns $>$ Type $>$ int
Fns $>\mathrm{I} / \mathrm{O}>$ input
**By default, input returns a string value. String values are treated like characters not numbers. Place int() around the input casts the input as an integer.
**Hint: The tools menu, [zoom], has copy/paste commands that might be helpful.
12. If the input is correct, add one to the number of darts and the bonus variable. Otherwise, print the correct result and set bonus back to 0 .
if un1+un2==b and un1*un2==c:
darts+=1
bonus+=1
else:
print("n1 =", n1," n2 =" ,n2)
bonus=0
13. Unindent from the if statement. (Make sure you have 4 diamonds).

Print a blank line. If the user has answered two questions in a row correctly (bonus=2), then add a free dart and set the bonus back to 0 .
print(" ")
if bonus==2:
darts+=1
bonus=0

Factor Darts
Teacher Notes

```
    EDITOR: DARTS
    PROGRAM LINE 002?
    disp="\times^2"
....if b>0:
.....disp+="+"+str(b)+"x"
...elif b<0:
......disp+=str(b)+"x"
....if c>0:
\cdots....disp+="+"+str(c)
...elif c<0:
\ldots....disp+=str(c)
***print(disp)
* -."print("(x+n1)(x+n2)")
```

```
    EDITOR: DARTS
    PROGRAM LINE 0029
    disp+="+"+str(b)+"x"
...elif b<0:
.....disp+=str(b)+"x"
....if c>0:
......disp+="+"+str(c)
....elif c<0:
*....disp+=str(c)
....print(disp)
*.*print("(x+n1)(x+n2)")
...un1=int(input("enter n1 "))
...un2=int(input("enter n2 "))
```

14. Now to repeat the same process for the "difficult" questions.

You will:
generate the values
display the question
get the user's input
check the user's input
add darts if need be, otherwise display the correct values.
15. The second quadratic form will factor into $(a x+n u m 1)(x+n u m 2)$.

How would you calculate b and c in this form?

Use distribution to factor $(a x+n u m 1)(x+n u m 2)$
16. Did you get the following?

$$
\begin{aligned}
& \left(a^{*} x+n 1\right)(x+n 2) \\
& a x^{2}+a^{*} n 2^{*} x+n 1^{*} x+n 1^{*} n 2 \\
& a x^{2}+\left(a^{*} n 2+n 1\right) x+n 1^{*} n 2 \\
& b=a^{*} n 2+n 1 \\
& c=n 1^{*} n 2
\end{aligned}
$$

17. Add 6 lines of code.
a.) Generate a number from 0 to 1 .

If the number is a 0 , variable a should be between 2 and 5 otherwise a is a number between -5 and -2 .
b.) Generate n 1 to be a random number between -10 and 10
c.) Generate n 2 to be a random number between -10 and 10 .
18. Add the two lines to calculate b and c
$\mathrm{b}=\mathrm{a}^{*} \mathrm{n} 2+\mathrm{n} 1$
c $=n 1 * n 2$
19. Check the last 8 lines of code. Did you do the following?
if randint $(0,1)==0$:
$a=$ randint(2,5)
else:
$a=$ randint $(-5,-2)$
n1 = randint(-10,10)
n2 $=$ randint(-10,10)
$\mathrm{b}=\mathrm{a}^{*} \mathrm{n} 2+\mathrm{n} 1$
$\mathrm{c}=\mathrm{n} 1^{*} \mathrm{n} 2$
20. The display code for the "difficult" form is the exact same as the display code for the "easy" form. The only difference is the first line of code. Add the line:

$$
\operatorname{disp}=\operatorname{str}(a)+" x^{\wedge} 2 "
$$

Factor Darts
Teacher Notes

```
    EDITOR: DARTS
    PROGRAM LINE 0048
        bonus=0
* else:
\ldots..if randint(0,1)==0:
\cdots\cdots\cdotsa=randint(2,5)
***else:
\cdots\cdots,a=randint(-5,-2)
** n1=randint(-10,10)
\cdots. n2=randint(-10,10)
***b=a*n2+n1
* c=n1粦n2
* .. disp=str(a)+"x^2"
Fns... a A ## Tools|
```

```
EDITOR: DARTS
`.) PROGRMM LINE 0059
**.disp=str(a)+"x^2"
... if b>0:
*....disp+="+"+str(b)+"x"
**elif b<0:
\ldots...disp+=str(b)+"x"
**,if c>0:
\cdots\cdots..disp+="+"+str(c)
...elif c<0:
*\cdots* disp+=str(c)
...print(disp)
Fns... (a A # Tools| Run /Files
```

```
    EDITOR: DARTS
    PROGRMM LINE 0058
    disp=str(a)+" x^2"
...if b>0:
* *.. disp+="+"+str(b)+"x"
*.elif b<0:
\ldots...disp+=str(b)+"x"
**if c>0:
****disp+="+"+str(c)
...elif c<0:
*** disp+=str(c)
**print(disp)
*.*print("(ax+n\1) (x+n2)")
Fns... |a A # Tools| Run Files
```

(c) EDITOR: DARTS
PROGRAM LINE 0062
elif $b<0$:
disp+=str(b)+"x"
if $c>0$:
** ...disp+="+"+str(c)
. . . elif c<0:
disp+=str(c)
** print(disp)
....print (" $(a x+n 1)(x+n 2)$ ")
\ldots a1=int(input("enter a "))
\ldots....u1=int(input("enter n1 "))
*...u2=int(inpu_("enter n2 "))

Fns...	a $\mathrm{A} \#$	Tools	Run

24. Check the user's input against the correct values.

This code will be very similar to the code you wrote for the "easy" form.

Remember you generated $\mathrm{a}, \mathrm{n} 1, \mathrm{n} 2$ then stored them as b and c .

Math Explorations with Python

TI-84 Plus CE Python Technology

$$
\begin{aligned}
& \left(a^{*} x+n 1\right)(x+n 2) \\
& a x^{2}+a^{*} n 2^{*} x+n 1^{*} x+n 1^{*} n 2 \\
& a x^{2}+\left(a^{*} n 2+n 1\right) x+n 1^{*} n 2
\end{aligned}
$$

You asked the user for a1, u1, u2.

Fill in the missing code statements below:
if \qquad $==a$ and \qquad $==\mathrm{b}$ and \qquad $==\mathrm{c}$:
darts \qquad
bonus \qquad
else:
print(\qquad _)
bonus \qquad
\qquad :
darts \qquad
bonus \qquad
25. Does you code match the code below?

```
if \(a 1==a\) and \(a^{*} u 2+u 1==b\) and \(u 1^{*} u 2==c\) :
    darts+=2
    bonus+=1
else:
    print("sorry a =", a, " n1=", n1," n2=", n2)
    bonus=0
if bonus==2:
    darts+=1
    bonus=0
```

26. The dartboard will be drawn after all the questions have been answered.

Therefore, unindent.

Draw the dart board using three concentric circles.

The window will be $[200,150]$.

Each circle will be centered at $(130,60)$

To draw the circle, you will plot points using the parametric form of a circle.
$x=$ radius $^{*} \cos (\theta)+$ center $_{x}$ and $y=$ radius $^{*} \sin (\theta)+$ center $_{y}$

Complete the template below:
for i in range(60):
\#magenta large circle
plt.color(255,0,255)
plt.plot(60*cos(degree(i)) + 130, 60*sin(degree(i)) +60 , "o")
\#blue middle circle (pick any color you like)
plt.color(\qquad , \qquad , ___
plt.plot(\qquad , \qquad "o")
\#yellow smallest circle (pick any color you like)
plt.color(\qquad , \qquad _)
plt.plot(\qquad
\qquad , "o")

Math Explorations with Python
TI-84 Plus CE Python Technology
27. Code the loop for the circles. Feel free to change the colors.

Before the loop, clear the screen and set the window.

```
plt.window(0,200, 0,150)
plt.cls()
for i in range(60):
    plt.color(255,0,255)
    plt.plot(60*}\operatorname{cos}(\mathrm{ degrees(i))+135, 60*sin(degrees(i))+60, "o")
    plt.color(0,255,255)
    plt.plot(40*}\operatorname{cos}(\mathrm{ degrees(i))+135, 40*sin(degrees(i))+60, "o")
    plt.color(255,255,0)
    plt.plot(20*}\operatorname{cos}(\mathrm{ degrees(i))+135, 20*sin(degrees(i))+60, "o")
```

 Fns > Modul > ti_plotlib > Draw > color
 Fns \(>\) Modul \(>\) ti_plotlib \(>\) Draw \(>\) plot
 Fns > Modul > math > Trig > cos
 Fns \(>\) Modul \(>\) math \(>\) Trig \(>\) sin
 Fns > Modul > math > Trig > degree
 28. Create a score variable that starts at 0.
29. You will code the project to let the user press [clear] to toss a dart. To let the user know this, draw "toss(clear)" to the screen.
plt.color(0,0,0)
plt.text_at(1,"toss(clear)","right")

Fns > Modul > TI_plotlib > Draw > text_at

Factor Darts
Teacher Notes

```
        EDITOR: DARTS
Program LINE 0075
plt.window(0,200,0,150)
plt.cls()
for i in range(60):
* plt.color(255,0,255)
    plt.plot(60*cos(degrees(i))+13
        0,60*sin(degrees(i))+60,"0"
        )
    plt.color(0,255,255)
    plt.plot(40*cos(degrees(i))+13
        0,40wsin(degrees(i))+60, "0"
        t.color(255,255,0)
    plt.plot(20*cos(degrees(i))+13
        0,20wsin(degrees(i))+60,"0"
            )
```

```
    EDITOR: DARTS
    PROGRAM LINE 008
        IOGRAM LINE 0084
    plt.color(0,255,255)
*plt.plot(40,cos(degrees(i))+13
        0,40*sin(degrees(i))+60, "0"
        )
* plt.color(255,255,0)
* plt.plot(20*cos(degrees(i))+13
    0,20%sin(degrees(i))+60,"0"
    )
score= 0_
Fns... |a A #|Tools| Run |Files
E EDITOR: DARTS
    PROGRAM LINE 008B
    plt.color(255,255,0)
*plt.plot(20*cos(degrees(i))+13
    0,20*sin(degrees(i))+60,"0"
    )
score= 0
plt.color(0,0,0)
plt.text_at(1,"toss(clear)","rig
    ht")
Fns... 1 a A \#|Tools| Run |Files
```


Math Explorations with Python
 ti-84 Plus CE Python Technology

30. Now to toss the darts.

Create a loop that will repeat itself for each dart.
for i in range(darts):

Teacher Notes

```
EDITOR: DARTS
P PROGRMM LINE 0083
* plt.color(255,255,0)
* plt.plot(20*\operatorname{cos(degrees(i))+13}
    0,20*sin(degrees(i))+60,"0"
    )
score= 0
plt.color(0,0,0)
plt.text_at(1,"toss(clear)", "rig
    ht")
for i in range(darts):
Fns... /a A #|Tools|
```

31. For each toss of a dart, you will erase the old dart count and draw a new one. Add the line:
```
plt.text_at(2, "darts"+str(darts-i)"+ " score"+str(score),"left")
```

32. We don't want to throw the dart until the user presses [clear]. Add the lines:
while not escape(): continue

Fns > Modul > TI System > while not escape
33. For some shot variation, we will say:

If the shot was on an "even" dart throw,
generate a targeted shot x : $[100,160]$ and y : $[30,90]$.
Otherwise
generate a wide shot $\mathrm{x}: ~[70,190]$ and $\mathrm{y}:[0,110]$.
The modulus symbol \% is used to find the remainder in division.
Even dart numbers such as 8,6 and 4 all return 0 if you type darts $\% 2$.
Odd dart numbers such as 9,7 and 5 all return 1 if you type darts\%.

Add the following lines:
if darts $\% 2==0$:
$x=$ randint $(100,160)$
$y=r a n d i n t(30,90)$
else:
x=randint $(70,190)$
$y=r a n d i n t(0,110)$
education.ti.com
34. Plot the point

```
EDITOR: DARTS
    PROGRAM LINE 0093
        s)+" score"+str(score),"le
        ft")
* while not escape():
*...continue
* if darts%2==0:
\cdots.*x=randint (100,160)
...y=randint(30,90)
*else:
\cdots...x=randint(70,190)
\cdots..y=randint(0,110)
    *plt.plot(x,y,"x")
|Fns... (a A #|Tools|
```

plt.plot(x, y, " x " $)$
35. Points are scored based on the distance the dart lands from the bullseye.

Any dart that lands within 20 units
from the center earns 5 points.

Any dart that lands within 40 units from the center earns 3 points.

Any dart that lands within 60 units from the center earns 1 point.

If the dart is located at (x, y) and the center is at $(130,60)$, what is the equation that represents the distance between the two points?
36. Use the equation from above to fill in the blanks below. Then code the lines on your project. Remember to use **2 instead of ${ }^{\wedge} 2$ when coding the distance.
dist= \qquad
if dist $<=20$:
score $+=5$
elif dist \qquad :
score+=3
elif dist \qquad :
score+=1

Math Explorations with Python

TI-84 Plus CE Python Technology

37. Does your code match the code to the right?

Factor Darts

Teacher Notes

```
EDITOR: DARTS
    programLINE 0109
    * * x=randint(70,190)
    \cdots.y=randint(0,110)
    *plt.plot(x,y,"x")
    * dist=sqrt((x-130)***2+(y-60)**2
        )
..if dist<=20:
*...score+=5
* elif dist<=40:
*..-score+=3
* elif dist<=60:
        score+=1
Fns... |a A #|Tools| Run |Files
```

```
B EDITOR: DARTS
```

B EDITOR: DARTS
ProgRamLINE 0110
ProgRamLINE 0110
dist<=20:
dist<=20:
score+=5
score+=5
elif dist<=40:
elif dist<=40:
score+=3
score+=3
elif dist<=60:
elif dist<=60:
--score+=1
--score+=1
plt.text_at(2,"darts 0 score"+s
plt.text_at(2,"darts 0 score"+s
tr(score),"left")
tr(score),"left")
plt.show_plot()
plt.show_plot()
|Fns... |a A \#|Tools|/Run /Files

```
|Fns... |a A #|Tools|/Run /Files
```

```
# Random Simulation
from random import *
from time import *
import ti_plotlib as plt
from math import *
from ti_system import *
darts=0
bonus=0
for i in range(4):
    if randint(0,1)==0:
        n1=randint(-10,10)
    n2=randint(-10,10)
    b=n1+n2
    c=n1*n2
    disp="x^2"
    if b>0:
        disp+="+"+str(b)+"x"
    elif b<0:
        disp+=str(b)+"x"
    if c>0
        disp+="+"+str(c)
```

```
elif c<0:
    disp+=str(c)
print(disp)
print("(x+n1)(x+n2)")
un1=int(input("enter n1 "))
un2=int(input("enter n2 "))
if un1+un2==b and un1*un2==c:
    darts+=1
    bonus+=1
else:
    print("n1=",n1," n2=",n2)
    bonus=0
print("")
if bonus==2:
    darts+=1
    bonus=0
else:
    if randint(0,1)==0:
    a=randint(2,5)
else:
    a=randint(-5,-2)
n1=randint(-10,10)
n2=randint(-10,10)
b=a*n2+n1
c=n1*n2
disp=str(a)+"x^2"
if b>0:
    disp+="+"+str(b)+"x"
elif b<0:
    disp+=str(b)+"x"
if c>0:
    disp+="+"+str(c)
elif c<0:
    disp+=str(c)
print(disp)
print("(ax+n1)(x+n2)")
a1=int(input("enter a "))
u1=int(input("enter n1 "))
u2=int(input("enter n2 "))
if a1==a and a1*u2+u1==b and u1* u2==c:
    darts+=2
    bonus+=1
else:
    print("sorry a=",a," n1=",n1," n2",n2)
```

Math Explorations with Python
ti-84 Plus CE Python Technology

Factor Darts
Teacher Notes

```
    bonus=0
    if bonus==2:
    darts+=1
    bonus=0
```

plt.window(0,200,0,150)
plt.cls()
for i in range(60):
plt.color(255,0,255)
plt.plot($60 * \cos ($ degrees(i)) $+130,60 * \sin ($ degrees(i)) $\mathbf{6 0}, " \mathrm{o"})$
plt.color(0,255,255)
plt.plot($40 * \cos ($ degrees(i))+130,40*sin(degrees(i))+60,"o")
plt.color(255,255,0)
plt.plot(20* $\cos ($ degrees(i))+130,20*sin(degrees(i))+60,"o")
score $=0$
plt.color $(\mathbf{0}, \mathbf{0}, \mathbf{0})$
plt.text_at(1,"toss(clear)","right")
for i in range(darts):
plt.text_at(2,"darts"+str(darts-i)+" score"+str(score),"left")
while not escape():
continue
if darts\%2==0:
$\mathrm{x}=$ randint $(\mathbf{1 0 0 , 1 6 0)}$
$y=$ randint $(30,90)$
else:
$\mathrm{x}=$ randint $(\mathbf{7 0 , 1 9 0})$
$y=$ randint $(0,110)$
plt.plot($x, y, " x ")$
dist=sqrt((x-130)**2+(y-60)**2)
if dist<=20:
score+=5
elif dist<=40:
score+=3
elif dist<=60:
score+=1
plt.text_at(2,"darts 0 score"+str(score),"left")
plt.show_plot()

